Timezone: »
Accelerated Single-Call Methods for Constrained Min-Max Optimization
Yang Cai · Weiqiang Zheng
Event URL: https://openreview.net/forum?id=yKv8Qqr8RYK »
We study first-order methods for constrained min-max optimization. Existing methods either requires two gradient calls or two projections in each iteration, which may be costly in applications. In this paper, we first show that the \emph{Optimistic Gradient (OG)} method, a \emph{single-call single-projection} algorithm, has $O(\frac{1}{\sqrt{T}})$ convergence rate for inclusion problems with operators that satisfy the weak Minty variation inequality (MVI). Our second result is the first single-call single-projection algorithm -- the \emph{Accelerated Reflected Gradient (ARG)} method that achieves the \emph{optimal $O(\frac{1}{T})$} convergence rate for inclusion problems that satisfy negative comonotonicity. Both the weak MVI and negative comonotonicity are well-studied assumptions and capture a rich set of non-convex non-concave min-max optimization problems. Finally, we show that the \emph{Reflected Gradient (RG)} method, another \emph{single-call single-projection} algorithm, has $O(\frac{1}{\sqrt{T}})$ last-iterate convergence rate for constrained convex-concave min-max optimization, answering an open problem of (Hsieh et al., 2019).
We study first-order methods for constrained min-max optimization. Existing methods either requires two gradient calls or two projections in each iteration, which may be costly in applications. In this paper, we first show that the \emph{Optimistic Gradient (OG)} method, a \emph{single-call single-projection} algorithm, has $O(\frac{1}{\sqrt{T}})$ convergence rate for inclusion problems with operators that satisfy the weak Minty variation inequality (MVI). Our second result is the first single-call single-projection algorithm -- the \emph{Accelerated Reflected Gradient (ARG)} method that achieves the \emph{optimal $O(\frac{1}{T})$} convergence rate for inclusion problems that satisfy negative comonotonicity. Both the weak MVI and negative comonotonicity are well-studied assumptions and capture a rich set of non-convex non-concave min-max optimization problems. Finally, we show that the \emph{Reflected Gradient (RG)} method, another \emph{single-call single-projection} algorithm, has $O(\frac{1}{\sqrt{T}})$ last-iterate convergence rate for constrained convex-concave min-max optimization, answering an open problem of (Hsieh et al., 2019).
Author Information
Yang Cai (Yale University)
Weiqiang Zheng (Yale University)
More from the Same Authors
-
2021 : Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions »
Xiaotie Deng · Xinyan Hu · Tao Lin · Weiqiang Zheng -
2021 : Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions »
Xiaotie Deng · Xinyan Hu · Tao Lin · Weiqiang Zheng -
2022 : Accelerated Algorithms for Monotone Inclusion and Constrained Nonconvex-Nonconcave Min-Max Optimization »
Yang Cai · Argyris Oikonomou · Weiqiang Zheng -
2023 Poster: Uncoupled and Convergent Learning in Two-Player Zero-Sum Markov Games »
Yang Cai · Haipeng Luo · Chen-Yu Wei · Weiqiang Zheng -
2022 Panel: Panel 2A-4: Uncoupled Learning Dynamics… & Finite-Time Last-Iterate Convergence… »
Yang Cai · Ioannis Anagnostides -
2022 : Poster Session 2 »
Jinwuk Seok · Bo Liu · Ryotaro Mitsuboshi · David Martinez-Rubio · Weiqiang Zheng · Ilgee Hong · Chen Fan · Kazusato Oko · Bo Tang · Miao Cheng · Aaron Defazio · Tim G. J. Rudner · Gabriele Farina · Vishwak Srinivasan · Ruichen Jiang · Peng Wang · Jane Lee · Nathan Wycoff · Nikhil Ghosh · Yinbin Han · David Mueller · Liu Yang · Amrutha Varshini Ramesh · Siqi Zhang · Kaifeng Lyu · David Yunis · Kumar Kshitij Patel · Fangshuo Liao · Dmitrii Avdiukhin · Xiang Li · Sattar Vakili · Jiaxin Shi -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2022 Poster: Finite-Time Last-Iterate Convergence for Learning in Multi-Player Games »
Yang Cai · Argyris Oikonomou · Weiqiang Zheng -
2018 Poster: Learning Safe Policies with Expert Guidance »
Jessie Huang · Fa Wu · Doina Precup · Yang Cai -
2017 : Spotlights »
Antti Kangasrääsiö · Richard Everett · Yitao Liang · Yang Cai · Steven Wu · Vidya Muthukumar · Sven Schmit