Timezone: »
Learning neural networks for CO problems is notoriously difficult given the lack of labeled data as the training gets trapped easily at local optima. However, the hardness of combinatorial optimization (CO) problems hinders collecting solutions for supervised learning. We propose a simple but effective unsupervised annealed training framework for CO problems in this work. In particular, we transform CO problems into unbiased energy-based models (EBMs). We carefully selected the penalties terms to make the EBMs as smooth as possible. Then we train graph neural networks to approximate the EBMs and we introduce an annealed loss function to prevent the training from being stuck at local optima near the initialization.An experimental evaluation demonstrates that our annealed training framework obtains substantial improvements. In four types of CO problems, our method achieves performance substantially better than other unsupervised neural methods on both synthetic and real-world graphs.
Author Information
Haoran Sun (Georgia Institute of Technology)
Etash Guha (Georgia Institute of Technology)
Hanjun Dai (Google Brain)
More from the Same Authors
-
2020 : Session B, Poster 20: A Framework For Differentiable Discovery Of Graph Algorithms »
Hanjun Dai -
2020 : Session B, Poster 18: Improving Learning To Branch Via Reinforcement Learning »
Haoran Sun -
2023 Workshop: New Frontiers in Graph Learning (GLFrontiers) »
Jiaxuan You · Rex Ying · Hanjun Dai · Ge Liu · Azalia Mirhoseini · Smita Krishnaswamy -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2022 Workshop: New Frontiers in Graph Learning »
Jiaxuan You · Marinka Zitnik · Rex Ying · Yizhou Sun · Hanjun Dai · Stefanie Jegelka -
2022 Poster: Optimal Scaling for Locally Balanced Proposals in Discrete Spaces »
Haoran Sun · Hanjun Dai · Dale Schuurmans -
2022 Poster: Does GNN Pretraining Help Molecular Representation? »
Ruoxi Sun · Hanjun Dai · Adams Wei Yu -
2021 Poster: Multi-task Learning of Order-Consistent Causal Graphs »
Xinshi Chen · Haoran Sun · Caleb Ellington · Eric Xing · Le Song -
2020 : Poster Session B »
Ravichandra Addanki · Andreea-Ioana Deac · Yujia Xie · Francesco Landolfi · Antoine Prouvost · Claudius Gros · Renzo Massobrio · Abhishek Cauligi · Simon Alford · Hanjun Dai · Alberto Franzin · Nitish Kumar Panigrahy · Brandon Kates · Iddo Drori · Taoan Huang · Zhou Zhou · Marin Vlastelica · Anselm Paulus · Aaron Zweig · Minsu Cho · Haiyan Yin · Michal Lisicki · Nan Jiang · Haoran Sun -
2020 : Contributed Talk: A Framework For Differentiable Discovery Of Graph Algorithms »
Hanjun Dai -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2020 Poster: Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration »
Hanjun Dai · Rishabh Singh · Bo Dai · Charles Sutton · Dale Schuurmans