Timezone: »
Conditional gradient-based method for bilevel optimization with convex lower-level problem
Ruichen Jiang · Nazanin Abolfazli · Aryan Mokhtari · Erfan Yazdandoost Hamedani
Event URL: https://openreview.net/forum?id=2lKGRn-gi5 »
In this paper, we study simple bilevel optimization problems, where we minimize a smooth objective function over the optimal solution set of another convex constrained optimization problem. Several iterative methods have been developed for tackling this class of problems. Alas, their convergence guarantees are not satisfactory as they are either asymptotic for the upper-level objective, or the convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a conditional gradient-based (CG-based) method to solve the considered problem. The main idea is to locally approximate the solution set of the lower-level problem via a cutting plane, and then run a CG-type update to decrease the upper-level objective. When the upper-level objective is convex, we show that our method requires ${\mathcal{O}}(\max\{1/\epsilon_f,1/\epsilon_g\})$ iterations to find a solution that is $\epsilon_f$-optimal for the upper-level objective and $\epsilon_g$-optimal for the lower-level objective. Moreover, when the upper-level objective is non-convex, our method requires ${\mathcal{O}}(\max\{1/\epsilon_f^2,1/(\epsilon_f\epsilon_g)\})$ iterations to find an $(\epsilon_f,\epsilon_g)$-optimal solution. To the best of our knowledge, our method achieves the best-known iteration complexity for the considered bilevel problem.
In this paper, we study simple bilevel optimization problems, where we minimize a smooth objective function over the optimal solution set of another convex constrained optimization problem. Several iterative methods have been developed for tackling this class of problems. Alas, their convergence guarantees are not satisfactory as they are either asymptotic for the upper-level objective, or the convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a conditional gradient-based (CG-based) method to solve the considered problem. The main idea is to locally approximate the solution set of the lower-level problem via a cutting plane, and then run a CG-type update to decrease the upper-level objective. When the upper-level objective is convex, we show that our method requires ${\mathcal{O}}(\max\{1/\epsilon_f,1/\epsilon_g\})$ iterations to find a solution that is $\epsilon_f$-optimal for the upper-level objective and $\epsilon_g$-optimal for the lower-level objective. Moreover, when the upper-level objective is non-convex, our method requires ${\mathcal{O}}(\max\{1/\epsilon_f^2,1/(\epsilon_f\epsilon_g)\})$ iterations to find an $(\epsilon_f,\epsilon_g)$-optimal solution. To the best of our knowledge, our method achieves the best-known iteration complexity for the considered bilevel problem.
Author Information
Ruichen Jiang (UT Austin)
Nazanin Abolfazli (University of Arizona)
Aryan Mokhtari (UT Austin)
Erfan Yazdandoost Hamedani (University of Arizona)
More from the Same Authors
-
2022 : Statistical and Computational Complexities of BFGS Quasi-Newton Method for Generalized Linear Models »
Qiujiang Jin · Aryan Mokhtari · Nhat Ho · Tongzheng Ren -
2022 : Poster Session 2 »
Jinwuk Seok · Bo Liu · Ryotaro Mitsuboshi · David Martinez-Rubio · Weiqiang Zheng · Ilgee Hong · Chen Fan · Kazusato Oko · Bo Tang · Miao Cheng · Aaron Defazio · Tim G. J. Rudner · Gabriele Farina · Vishwak Srinivasan · Ruichen Jiang · Peng Wang · Jane Lee · Nathan Wycoff · Nikhil Ghosh · Yinbin Han · David Mueller · Liu Yang · Amrutha Varshini Ramesh · Siqi Zhang · Kaifeng Lyu · David Yunis · Kumar Kshitij Patel · Fangshuo Liao · Dmitrii Avdiukhin · Xiang Li · Sattar Vakili · Jiaxin Shi -
2022 Poster: FedAvg with Fine Tuning: Local Updates Lead to Representation Learning »
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai -
2021 Poster: Exploiting Local Convergence of Quasi-Newton Methods Globally: Adaptive Sample Size Approach »
Qiujiang Jin · Aryan Mokhtari -
2021 Poster: Generalization of Model-Agnostic Meta-Learning Algorithms: Recurring and Unseen Tasks »
Alireza Fallah · Aryan Mokhtari · Asuman Ozdaglar -
2021 Poster: On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement Learning »
Alireza Fallah · Kristian Georgiev · Aryan Mokhtari · Asuman Ozdaglar -
2020 Poster: Task-Robust Model-Agnostic Meta-Learning »
Liam Collins · Aryan Mokhtari · Sanjay Shakkottai -
2020 Poster: Second Order Optimality in Decentralized Non-Convex Optimization via Perturbed Gradient Tracking »
Isidoros Tziotis · Constantine Caramanis · Aryan Mokhtari -
2020 Poster: Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach »
Alireza Fallah · Aryan Mokhtari · Asuman Ozdaglar -
2020 Poster: Submodular Meta-Learning »
Arman Adibi · Aryan Mokhtari · Hamed Hassani -
2019 : Invited talk: Aryan Mokhtari (UT Austin) »
Aryan Mokhtari -
2019 Poster: Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match »
Amin Karbasi · Hamed Hassani · Aryan Mokhtari · Zebang Shen -
2019 Poster: Robust and Communication-Efficient Collaborative Learning »
Amirhossein Reisizadeh · Hossein Taheri · Aryan Mokhtari · Hamed Hassani · Ramtin Pedarsani -
2018 Poster: Direct Runge-Kutta Discretization Achieves Acceleration »
Jingzhao Zhang · Aryan Mokhtari · Suvrit Sra · Ali Jadbabaie -
2018 Spotlight: Direct Runge-Kutta Discretization Achieves Acceleration »
Jingzhao Zhang · Aryan Mokhtari · Suvrit Sra · Ali Jadbabaie -
2018 Poster: Escaping Saddle Points in Constrained Optimization »
Aryan Mokhtari · Asuman Ozdaglar · Ali Jadbabaie -
2018 Spotlight: Escaping Saddle Points in Constrained Optimization »
Aryan Mokhtari · Asuman Ozdaglar · Ali Jadbabaie