Timezone: »
Nonsmooth Composite Nonconvex-Concave Minimax Optimization
Jiajin Li · Linglingzhi Zhu · Anthony Man-Cho So
Nonconvex-concave minimax optimization has received intense interest in machine learning, including learning with robustness to data distribution, learning with non-decomposable loss, adversarial learning, to name a few. Nevertheless, most existing works focus on the gradient-descent-ascent (GDA) variants that can only be applied in smooth settings. In this paper, we consider a family of minimax problems whose objective function enjoys the nonsmooth composite structure in the variable of minimization and is concave in the variables of maximization. By fully exploiting the composite structure, we propose a smoothed proximal linear descent ascent (\textit{smoothed} PLDA) algorithm and further establish its $\mathcal{O}(\epsilon^4)$ iteration complexity, which matches that of smoothed GDA~\cite{zhang2020single} under smooth settings. Moreover, under the mild assumption that the objective function satisfies the one-sided Kurdyka-Lojasiewicz condition with exponent $\theta \in (0,1)$, we can further improve the iteration complexity to $\mathcal{O}(\epsilon^{-2 \max\{2 \theta, 1\}})$. To the best of our knowledge, this is the first provably efficient algorithm for nonsmooth nonconvex-concave problems that can achieve the optimal iteration complexity $\mathcal{O}(\epsilon^{-2})$ if $\theta \in (0, 1/2]$.
Author Information
Jiajin Li (Stanford University)
Linglingzhi Zhu (The Chinese University of Hong Kong)
Anthony Man-Cho So (CUHK)
More from the Same Authors
-
2022 : Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization »
Kaiwen Zhou · Anthony Man-Cho So · James Cheng -
2022 : Synthetic Principle Component Design: Fast Covariate Balancing with Synthetic Controls »
Yiping Lu · Jiajin Li · Lexing Ying · Jose Blanchet -
2023 Poster: ReSync: Riemannian Subgradient-based Robust Rotation Synchronization »
Huikang Liu · Xiao Li · Anthony Man-Cho So -
2023 Poster: LogSpecT: Feasible Graph Learning Model from Stationary Signals with Recovery Guarantees »
Shangyuan LIU · Linglingzhi Zhu · Anthony Man-Cho So -
2023 Poster: Outlier-Robust Gromov Wasserstein for Graph Data »
Lemin Kong · Jiajin Li · Jianheng Tang · Anthony Man-Cho So -
2023 Poster: Doubly Smoothed GDA for Constrained Nonconvex-Nonconcave Minimax Optimization »
Taoli Zheng · Linglingzhi Zhu · Anthony Man-Cho So · Jose Blanchet · Jiajin Li -
2022 : Contributed Talks 2 »
Quanquan Gu · Aaron Defazio · Jiajin Li -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2022 Poster: Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints »
Jiajin Li · Sirui Lin · Jose Blanchet · Viet Anh Nguyen -
2020 Poster: Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates »
Kaiwen Zhou · Anthony Man-Cho So · James Cheng -
2020 Poster: Fast Epigraphical Projection-based Incremental Algorithms for Wasserstein Distributionally Robust Support Vector Machine »
Jiajin Li · Caihua Chen · Anthony Man-Cho So -
2019 Poster: A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression »
Jiajin Li · SEN HUANG · Anthony Man-Cho So -
2013 Poster: On the Linear Convergence of the Proximal Gradient Method for Trace Norm Regularization »
Ke Hou · Zirui Zhou · Anthony Man-Cho So · Zhi-Quan Luo -
2012 Poster: Learning with Partially Absorbing Random Walks »
Xiao-Ming Wu · Zhenguo Li · Shih-Fu Chang · John Wright · Anthony Man-Cho So -
2009 Poster: Fast Graph Laplacian Regularized Kernel Learning via Semidefinite–Quadratic–Linear Programming »
Xiao-Ming Wu · Anthony Man-Cho So · Zhenguo Li · Shuo-Yen Robert Li -
2009 Spotlight: Fast Graph Laplacian Regularized Kernel Learning via Semidefinite–Quadratic–Linear Programming »
Xiao-Ming Wu · Anthony Man-Cho So · Zhenguo Li · Shuo-Yen Robert Li