Timezone: »
Molecular complexity has been proposed as a potential agnostic biosignature — in other words: a way to search for signs of life beyond Earth without relying on “life as we know it.” More than one way to compute molecular complexity has been proposed, so comparing their performance in evaluating experimental data collected in situ, such as on board a probe or rover exploring another planet, is imperative. Here, we report the results of an attempt to deploy multiple machine learning (ML) techniques to predict molecular complexity scores directly from mass spectrometry data. Our initial results are encouraging and may provide fruitful guidance toward determining which complexity measures are best suited for use with experimental data. Beyond the search for signs of life, this approach is likewise valuable for studying the chemical composition of samples to assist decisions made by the rover or probe, and may thus contribute toward supporting the need for greater autonomy.
Author Information
Timothy Gebhard (Max Planck Institute for Intelligent Systems, Tübingen)
Aaron C. Bell (Insight Edge Inc.)

Aaron originally studied biology, and then moved into the field of astronomy as his interests evolved. While researching the Milky Way, and the kinds of dust and molecules floating around between the stars, he took a strong interest in the analysis of large astronomical “all-sky” surveys, taken by cutting-edge space telescopes. After finishing graduate school, Aaron continued astronomical research for a time, and joined the short-term research accelerator program, NASA Frontier Development Lab. Loving this type of fast-paced, collaborative atmosphere, he decided to move to industry, first working at a Tokyo-based AI solutions startup as an engineer, and finally joining Insight Edge as Data Scientist in May 2021. He has experience with image analysis, machine learning, data processing, and anomaly detection. Aaron continues to be interested in space, computing, and solving social problems through a balance technology, curiosity, and empathy. Aaron returned to the Frontier Development Lab for its 2022 iteration, as a researcher again with the Astrobiology Challenge Team, implementing machine learning in the search for agnostic biosignatures in space. Ph.D. in Astronomy, University of Tokyo, Graduate School of Science.
Jian Gong (Massachusetts Institute of Technology)
Jaden J. A. Hastings (XO.LABS)
George Fricke (University of New Mexico)
Nathalie Cabrol (SETI Institute)
Scott Sandford (NASA Ames Research Center)
Michael Phillips (Johns Hopkins Applied Physics Laboratory)
As a planetary geologist, I use remote sensing data and mathematical models to understand planetary bodies, their composition, geology and geochemistry, formation histories, and potential to host life. My research is focused on planetary surface geology and processes and applications of AI/ML to astrobiological exploration. The data I use in my research are hyper- and multispectral reflectance and thermal emission spectra, topographic data, and various other satellite- and small Unmanned Aerial System (sUAS)-based products. To augment my remote sensing approach, I conduct field work, employ numerical, analytical, and machine learning models, and perform laboratory and field spectroscopy. My research is highly collaborative, and I work with leading scientists in their field across many institutions, including at The University of Tennessee, Knoxville (UTK) and the SETI Institute (SI) where I am a Research Affiliate at both institutions, and at my home institution, The Johns Hopkins University Applied Physics Laboratory (APL).
Kimberley Warren-Rhodes (SETI Institute)
Atilim Gunes Baydin (University of Oxford)
More from the Same Authors
-
2021 : Learning the solar latent space: sigma-variational autoencoders for multiple channel solar imaging »
Edward Brown · Christopher Bridges · Bernard Benson · Atilim Gunes Baydin -
2021 : Simultaneous Multivariate Forecast of Space Weather Indices using Deep Neural Network Ensembles »
Bernard Benson · Christopher Bridges · Atilim Gunes Baydin -
2021 : Dropout and Ensemble Networks for Thermospheric Density Uncertainty Estimation »
Stefano Bonasera · Giacomo Acciarini · Jorge Pérez-Hernández · Bernard Benson · Edward Brown · Eric Sutton · Moriba Jah · Christopher Bridges · Atilim Gunes Baydin -
2022 : Atmospheric retrievals of exoplanets using learned parameterizations of pressure-temperature profiles »
Timothy Gebhard · Daniel Angerhausen · Björn Konrad · Eleonora Alei · Sascha Quanz · Bernhard Schölkopf -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2021 : Session 3 | Contributed talk: Maximilian Dax, "Amortized Bayesian inference of gravitational waves with normalizing flows" »
Maximilian Dax · Atilim Gunes Baydin -
2021 : Session 3 | Invited talk: Laure Zanna, "The future of climate modeling in the age of machine learning" »
Laure Zanna · Atilim Gunes Baydin -
2021 : Session 3 | Invited talk: Surya Ganguli, "From the geometry of high dimensional energy landscapes to optimal annealing in a dissipative many body quantum optimizer" »
Surya Ganguli · Atilim Gunes Baydin -
2021 : Session 2 | Contributed talk: George Stein, "Self-supervised similarity search for large scientific datasets" »
George Stein · Atilim Gunes Baydin -
2021 : Session 2 | Invited talk: Megan Ansdell, "NASA's efforts & opportunities to support ML in the Physical Sciences" »
Megan Ansdell · Atilim Gunes Baydin -
2021 : Session 1 | Contributed talk: Tian Xie, "Crystal Diffusion Variational Autoencoder for Periodic Material Generation" »
Tian Xie · Atilim Gunes Baydin -
2021 : Session 1 | Invited talk: Bingqing Cheng, "Predicting material properties with the help of machine learning" »
Bingqing Cheng · Atilim Gunes Baydin -
2021 : Session 1 | Invited talk: Max Welling, "Accelerating simulations of nature, both classical and quantum, with equivariant deep learning" »
Max Welling · Atilim Gunes Baydin -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2021 Poster: Domain Invariant Representation Learning with Domain Density Transformations »
A. Tuan Nguyen · Toan Tran · Yarin Gal · Atilim Gunes Baydin -
2020 : Session 3 | Invited talk: Laura Waller, "Physics-based Learning for Computational Microscopy" »
Laura Waller · Atilim Gunes Baydin -
2020 : Session 2 | Invited talk: Phiala Shanahan, "Generative Flow Models for Gauge Field Theory" »
Phiala Shanahan · Atilim Gunes Baydin -
2020 : Session 2 | Invited talk: Estelle Inack, "Variational Neural Annealing" »
Estelle Inack · Atilim Gunes Baydin -
2020 : Session 1 | Invited talk: Michael Bronstein, "Geometric Deep Learning for Functional Protein Design" »
Michael Bronstein · Atilim Gunes Baydin -
2020 : Session 1 | Invited talk: Lauren Anderson, "3D Milky Way Dust Map using a Scalable Gaussian Process" »
Lauren Anderson · Atilim Gunes Baydin -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2020 Poster: Black-Box Optimization with Local Generative Surrogates »
Sergey Shirobokov · Vladislav Belavin · Michael Kagan · Andrei Ustyuzhanin · Atilim Gunes Baydin -
2019 : Opening Remarks »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Program Transformations for ML »
Pascal Lamblin · Atilim Gunes Baydin · Alexander Wiltschko · Bart van Merriënboer · Emily Fertig · Barak Pearlmutter · David Duvenaud · Laurent Hascoet -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2017 : Panel discussion »
Atilim Gunes Baydin · Adam Paszke · Jonathan Hüser · Jean Utke · Laurent Hascoet · Jeffrey Siskind · Jan Hueckelheim · Andreas Griewank -
2017 : Beyond backprop: automatic differentiation in machine learning »
Atilim Gunes Baydin -
2017 Workshop: Deep Learning for Physical Sciences »
Atilim Gunes Baydin · Mr. Prabhat · Kyle Cranmer · Frank Wood