Timezone: »
We propose parameterizing the population distribution of the gravitational wave population modeling framework (Hierarchical Bayesian Analysis) with a normalizing flow. We first demonstrate the merit of this method on illustrative experiments and then analyze four parameters of the latest LIGO data release: primary mass, secondary mass, redshift, and effective spin. Our results show that despite the small and notoriously noisy dataset, the posterior predictive distributions (assuming a prior over the free parameters of the flow) of the observed gravitational wave population recover structure that agrees with robust previous phenomenological modeling results while being less susceptible to biases introduced by less-flexible distribution models. Therefore, the method forms a promising flexible, reliable replacement for population inference distributions, even when data is highly noisy.
Author Information
David Ruhe (University of Amsterdam)
Kaze Wong (Flatiron Institute)
Miles Cranmer (Princeton University)
Patrick Forré (University of Amsterdam)
More from the Same Authors
-
2022 : Adversarial Noise Injection for Learned Turbulence Simulations »
Jingtong Su · Julia Kempe · Drummond Fielding · Nikolaos Tsilivis · Miles Cranmer · Shirley Ho -
2022 : Physics-informed inference of animal movements from weather radar data »
Fiona Lippert · Patrick Forré -
2022 : Towards architectural optimization of equivariant neural networks over subgroups »
Kaitlin Maile · Dennis Wilson · Patrick Forré -
2023 Poster: Clifford Group Equivariant Neural Networks »
David Ruhe · Johannes Brandstetter · Patrick Forré -
2023 Poster: Deep Gaussian Markov Random Fields for Graph-Structured Dynamical Systems »
Fiona Lippert · Bart Kranstauber · Emiel van Loon · Patrick Forré -
2023 Oral: Clifford Group Equivariant Neural Networks »
David Ruhe · Johannes Brandstetter · Patrick Forré -
2022 Poster: Contrastive Neural Ratio Estimation »
Benjamin K Miller · Christoph Weniger · Patrick Forré -
2021 Poster: An Information-theoretic Approach to Distribution Shifts »
Marco Federici · Ryota Tomioka · Patrick Forré -
2021 Poster: Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions »
Emiel Hoogeboom · Didrik Nielsen · Priyank Jaini · Patrick Forré · Max Welling -
2021 Poster: Truncated Marginal Neural Ratio Estimation »
Benjamin K Miller · Alex Cole · Patrick Forré · Gilles Louppe · Christoph Weniger