Timezone: »
Predicting the binding structure of a small molecule ligand to a protein---a task known as molecular docking---is critical to drug design. Recent deep learning methods that treat docking as a regression problem have decreased runtime compared to traditional search-based methods but have yet to offer substantial improvements in accuracy. We instead frame molecular docking as a generative modeling problem and develop DiffDock, a diffusion generative model over the non-Euclidean manifold of ligand poses. To do so, we map this manifold to the product space of the degrees of freedom (translational, rotational, and torsional) involved in docking and develop an efficient diffusion process on this space. Empirically, DiffDock obtains a 38% top-1 success rate (RMSD<2Å) on PDBBind, significantly outperforming the previous state-of-the-art of traditional docking (23%) and deep learning (20%) methods. Moreover, DiffDock has fast inference times and provides confidence estimates with high selective accuracy.
Author Information
Gabriele Corso (MIT)
Hannes Stärk (MIT)

I am a first-year PhD student at MIT in the CS and AI Laboratory (CSAIL) co-advised by Tommi Jaakkola and Regina Barzilay. I work on geometric deep learning and physics-inspired ML and applications in molecular biology and other physical systems.
Bowen Jing (Massachusetts Institute of Technology)
Regina Barzilay (Massachusetts Institute of Technology)
Tommi Jaakkola (MIT)
Tommi Jaakkola is a professor of Electrical Engineering and Computer Science at MIT. He received an M.Sc. degree in theoretical physics from Helsinki University of Technology, and Ph.D. from MIT in computational neuroscience. Following a Sloan postdoctoral fellowship in computational molecular biology, he joined the MIT faculty in 1998. His research interests include statistical inference, graphical models, and large scale modern estimation problems with predominantly incomplete data.
More from the Same Authors
-
2021 : ATOM3D: Tasks on Molecules in Three Dimensions »
Raphael Townshend · Martin Vögele · Patricia Suriana · Alex Derry · Alexander Powers · Yianni Laloudakis · Sidhika Balachandar · Bowen Jing · Brandon Anderson · Stephan Eismann · Risi Kondor · Russ Altman · Ron Dror -
2021 Spotlight: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2021 : Consistent Accelerated Inference via Confident Adaptive Transformers »
Tal Schuster · Adam Fisch · Tommi Jaakkola · Regina Barzilay -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : Fragment-Based Sequential Translation for Molecular Optimization »
Benson Chen · Xiang Fu · Regina Barzilay · Tommi Jaakkola -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : Crystal Diffusion Variational Autoencoder for Periodic Material Generation »
Tian Xie · Xiang Fu · Octavian Ganea · Regina Barzilay · Tommi Jaakkola -
2022 : Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design »
Ilia Igashov · Hannes Stärk · Clément Vignac · Victor Garcia Satorras · Pascal Frossard · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations »
Xiang Fu · Zhenghao Wu · Wujie Wang · Tian Xie · Sinan Keten · Rafael Gomez-Bombarelli · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem »
Jason Yim · Brian L Trippe · Doug Tischer · David Baker · Tamara Broderick · Regina Barzilay · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Is Conditional Generative Modeling all you need for Decision-Making? »
Anurag Ajay · Yilun Du · Abhi Gupta · Josh Tenenbaum · Tommi Jaakkola · Pulkit Agrawal -
2022 : Generalized Laplacian Positional Encoding for Graph Representation Learning »
Sohir Maskey · Ali Parviz · Maximilian Thiessen · Hannes Stärk · Ylli Sadikaj · Haggai Maron -
2022 : Molecular Docking with Diffusion Generative Models »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 Spotlight: Poisson Flow Generative Models »
Yilun Xu · Ziming Liu · Max Tegmark · Tommi Jaakkola -
2022 Spotlight: Lightning Talks 6B-1 »
Yushun Zhang · Duc Nguyen · Jiancong Xiao · Wei Jiang · Yaohua Wang · Yilun Xu · Zhen LI · Anderson Ye Zhang · Ziming Liu · Fangyi Zhang · Gilles Stoltz · Congliang Chen · Gang Li · Yanbo Fan · Ruoyu Sun · Naichen Shi · Yibo Wang · Ming Lin · Max Tegmark · Lijun Zhang · Jue Wang · Ruoyu Sun · Tommi Jaakkola · Senzhang Wang · Zhi-Quan Luo · Xiuyu Sun · Zhi-Quan Luo · Tianbao Yang · Rong Jin -
2022 Panel: Panel 2A-1: Molecule Generation by… & Torsional Diffusion for… »
Bowen Jing · Xiangzhe Kong -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : Invited Talk: Tommi Jaakkola »
Tommi Jaakkola -
2022 Poster: Torsional Diffusion for Molecular Conformer Generation »
Bowen Jing · Gabriele Corso · Jeffrey Chang · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Poisson Flow Generative Models »
Yilun Xu · Ziming Liu · Max Tegmark · Tommi Jaakkola -
2021 : Data Opportunities: unsolved medical problems and where new data can help »
Bin Yu · Regina Barzilay · Marzyeh Ghassemi · Emma Pierson -
2021 : Learning Graph Search Heuristics »
Michal Pándy · Rex Ying · Gabriele Corso · Petar Veličković · Jure Leskovec · Pietro Liò -
2021 : Session 2 Keynote 1 »
Regina Barzilay -
2021 : Invited Talk 5: Regina Barzilay: Infusing biology into molecular models for property prediction »
Regina Barzilay -
2021 : Consistent Accelerated Inference via Confident Adaptive Transformers »
Tal Schuster · Adam Fisch · Tommi Jaakkola · Regina Barzilay -
2021 Poster: Learning Graph Models for Retrosynthesis Prediction »
Vignesh Ram Somnath · Charlotte Bunne · Connor Coley · Andreas Krause · Regina Barzilay -
2021 Poster: Understanding Interlocking Dynamics of Cooperative Rationalization »
Mo Yu · Yang Zhang · Shiyu Chang · Tommi Jaakkola -
2021 : ATOM3D: Tasks on Molecules in Three Dimensions »
Raphael Townshend · Martin Vögele · Patricia Suriana · Alex Derry · Alexander Powers · Yianni Laloudakis · Sidhika Balachandar · Bowen Jing · Brandon Anderson · Stephan Eismann · Risi Kondor · Russ Altman · Ron Dror -
2021 Poster: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2020 : Protein model quality assessment using rotation-equivariant, hierarchical neural networks »
Stephan Eismann · Patricia Suriana · Bowen Jing · Raphael Townshend · Ron Dror -
2020 : Contributed Talk - Learning from Protein Structure with Geometric Vector Perceptrons »
Bowen Jing · Stephan Eismann · Patricia Suriana · Raphael Townshend · Ron Dror -
2019 Poster: Solving graph compression via optimal transport »
Vikas Garg · Tommi Jaakkola -
2019 Poster: Generative Models for Graph-Based Protein Design »
John Ingraham · Vikas Garg · Regina Barzilay · Tommi Jaakkola -
2019 Poster: Direct Optimization through $\arg \max$ for Discrete Variational Auto-Encoder »
Guy Lorberbom · Andreea Gane · Tommi Jaakkola · Tamir Hazan -
2019 Poster: Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers »
Guang-He Lee · Yang Yuan · Shiyu Chang · Tommi Jaakkola -
2019 Poster: A Game Theoretic Approach to Class-wise Selective Rationalization »
Shiyu Chang · Yang Zhang · Mo Yu · Tommi Jaakkola -
2018 : Invited Talk Session 3 »
Alexandre Tkatchenko · Tommi Jaakkola · Jennifer Wei -
2018 Poster: Towards Robust Interpretability with Self-Explaining Neural Networks »
David Alvarez-Melis · Tommi Jaakkola -
2017 Poster: Local Aggregative Games »
Vikas Garg · Tommi Jaakkola -
2017 Poster: Style Transfer from Non-Parallel Text by Cross-Alignment »
Tianxiao Shen · Tao Lei · Regina Barzilay · Tommi Jaakkola -
2017 Spotlight: Style Transfer from Non-parallel Text by Cross-Alignment »
Tianxiao Shen · Tao Lei · Regina Barzilay · Tommi Jaakkola -
2017 Poster: Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network »
Wengong Jin · Connor Coley · Regina Barzilay · Tommi Jaakkola -
2016 Poster: Learning Tree Structured Potential Games »
Vikas Garg · Tommi Jaakkola -
2015 Poster: From random walks to distances on unweighted graphs »
Tatsunori Hashimoto · Yi Sun · Tommi Jaakkola -
2015 Poster: Principal Differences Analysis: Interpretable Characterization of Differences between Distributions »
Jonas Mueller · Tommi Jaakkola -
2014 Poster: Controlling privacy in recommender systems »
Yu Xin · Tommi Jaakkola -
2013 Poster: Learning Efficient Random Maximum A-Posteriori Predictors with Non-Decomposable Loss Functions »
Tamir Hazan · Subhransu Maji · Joseph Keshet · Tommi Jaakkola -
2013 Poster: On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations »
Tamir Hazan · Subhransu Maji · Tommi Jaakkola -
2012 Workshop: Machine Learning Approaches to Mobile Context Awareness »
Katherine Ellis · Gert Lanckriet · Tommi Jaakkola · Lenny Grokop -
2012 Poster: Convergence Rate Analysis of MAP Coordinate Minimization Algorithms »
Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2011 Tutorial: Linear Programming Relaxations for Graphical Models »
Amir Globerson · Tommi Jaakkola -
2010 Spotlight: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2010 Poster: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2008 Workshop: Approximate inference - how far have we come? »
Amir Globerson · David Sontag · Tommi Jaakkola -
2008 Poster: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2008 Spotlight: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2007 Oral: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola -
2007 Poster: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola -
2007 Poster: Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations »
Amir Globerson · Tommi Jaakkola -
2006 Talk: Approximate inference using planar graph decomposition »
Amir Globerson · Tommi Jaakkola -
2006 Poster: Approximate inference using planar graph decomposition »
Amir Globerson · Tommi Jaakkola -
2006 Poster: Game Theoretic Algorithms for Protein-DNA binding »
Luis Perez-Breva · Luis E Ortiz · Chen-Hsiang Yeang · Tommi Jaakkola -
2006 Spotlight: Game Theoretic Algorithms for Protein-DNA binding »
Luis Perez-Breva · Luis E Ortiz · Chen-Hsiang Yeang · Tommi Jaakkola -
2006 Poster: Parameter Expanded Variational Bayesian Methods »
Yuan (Alan) Qi · Tommi Jaakkola