Timezone: »

 
Closing the resolution gap in Lyman alpha simulations with deep learning
Cooper Jacobus · Peter Harrington · Zarija Lukić
In recent years, super-resolution and related approaches powered by deep neural networks have emerged as a compelling option to accelerate computationally expensive cosmological simulations, which require modeling complex multi-physics systems in large spatial volumes. However, training such models in a physically consistent way is not always feasible or well-defined, as the data volume output by a super-resolution model may be too large, and the spatiotemporal dynamics of the simulation as well as the statistics of key observables like Lyman alpha flux are very sensitive to changes in resolution. In this work we address both challenges simultaneously, training neural networks to synthesize \Lya{} and other hydrodynamic fields with correct statistics on the relevant length scales but represented on the coarse grid of the input simulations. Effectively, our method is capable of 8x super-resolving a coarse simulation in-place without increasing memory footprint, using just a single pair of simulations for training. With chunked inference, we are able to apply the model to simulations of arbitrary size after training, and demonstrate this capability on a very large volume simulation spanning 600 Mpc/$h$.

Author Information

Cooper Jacobus (UC Berkeley)
Cooper Jacobus

Undergraduate interested in Computational Physics and Cosmic Structure

Peter Harrington (Lawrence Berkeley National Laboratory)
Zarija Lukić (Lawrence Berkeley National Laboratory (Berkeley Lab))

More from the Same Authors

  • 2022 : Generative Modeling of High-resolution Global Precipitation Forecasts »
    James Duncan · Peter Harrington · Shashank Subramanian
  • 2022 : FourCastNet: A practical introduction to a state-of-the-art deep learning global weather emulator »
    Jaideep Pathak · Shashank Subramanian · Peter Harrington · Thorsten Kurth · Andre Graubner · Morteza Mardani · David Hall · Karthik Kashinath · Anima Anandkumar
  • 2019 : Morning Coffee Break & Poster Session »
    Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger