Timezone: »
We introduce GAUCHE, a library for GAUssian processes in CHEmistry. Gaussian processes have long been a cornerstone of probabilistic machine learning, affording particular advantages for uncertainty quantification and Bayesian optimisation. Extending Gaussian processes to chemical representations however is nontrivial, necessitating kernels defined over structured inputs such as graphs, strings and bit vectors. By defining such kernels in GAUCHE, we seek to open the door to powerful tools for uncertainty quantification and Bayesian optimisation in chemistry. Motivated by scenarios frequently encountered in experimental chemistry, we showcase applications for GAUCHE in molecular discovery and chemical reaction optimisation.
Author Information
Ryan-Rhys Griffiths (University of Cambridge)
Leo Klarner (University of Oxford)
Henry Moss (Secondmind)
I am a Senior Machine Learning Researcher at Secondmind (formerly PROWLER.io). I leverage information-theoretic arguments to provide efficient, reliable and scalable Bayesian optimisation for problems inspired by science and the automotive industry.
Aditya Ravuri (University of Cambridge)
Sang Truong (Stanford University)
Bojana Rankovic (EPFL)
Yuanqi Du (Cornell University)
Arian Jamasb (University of Cambridge)
Julius Schwartz (N/A)
Austin Tripp (University of Cambridge)
Gregory Kell (King's College London)
Anthony Bourached (University College London)
Alex Chan (University of Cambridge)
Jacob Moss (University of Cambridge)
Chengzhi Guo (University of Cambridge)
Alpha Lee (University of Cambridge)
Philippe Schwaller (EPFL)
Jian Tang (Mila)
More from the Same Authors
-
2021 Spotlight: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : The Medkit-Learn(ing) Environment: Medical Decision Modelling through Simulation »
Alex Chan · Ioana Bica · Alihan Hüyük · Daniel Jarrett · Mihaela van der Schaar -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2021 : Turning high-throughput structural biology into predictive drug design »
Kadi Saar · Daren Fearon · John Chodera · Frank von Delft · Alpha Lee -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning »
Ziming Liu · Yuanqi Du · Yunyue Chen · Max Tegmark -
2021 : A Fresh Look at De Novo Molecular Design Benchmarks »
Austin Tripp · Gregor Simm · José Miguel Hernández-Lobato -
2021 : Multi-task Learning with Domain Knowledge for Molecular Property Prediction »
Shengchao Liu · Meng Qu · Zuobai Zhang · Jian Tang -
2021 : Approximate Latent Force Model Inference »
Jacob Moss · Felix Opolka · Pietro Lió -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2022 : Fantasizing with Dual GPs in Bayesian Optimization and Active Learning »
Paul Chang · Prakhar Verma · ST John · Victor Picheny · Henry Moss · Arno Solin -
2022 : Ice Core Dating using Probabilistic Programming »
Aditya Ravuri · Tom Andersson · Ieva Kazlauskaite · William Tebbutt · Richard Turner · Scott Hosking · Neil Lawrence · Markus Kaiser -
2022 : PIPS: Path Integral Stochastic Optimal Control for Path Sampling in Molecular Dynamics »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2022 : Re-Evaluating Chemical Synthesis Planning Algorithms »
Austin Tripp · Krzysztof Maziarz · Sarah Lewis · Guoqing Liu · Marwin Segler -
2022 : Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction »
Wenlin Chen · Austin Tripp · José Miguel Hernández-Lobato -
2022 : ChemSpacE: Interpretable and Interactive Chemical Space Exploration »
Yuanqi Du · Xian Liu · Nilay Shah · Shengchao Liu · Jieyu Zhang · Bolei Zhou -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Improving Molecular Pretraining with Complementary Featurizations »
Yanqiao Zhu · Dingshuo Chen · Yuanqi Du · Yingze Wang · Qiang Liu · Shu Wu -
2023 Poster: GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Yuanqi Du · Samuel Stanton · Gary Tom · Bojana Rankovic · Arian Jamasb · Aryan Deshwal · Julius Schwartz · Austin Tripp · Gregory Kell · Simon Frieder · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Johannes Peter Dürholt · Saudamini Chaurasia · Ji Won Park · Felix Strieth-Kalthoff · Alpha Lee · Bingqing Cheng · Alan Aspuru-Guzik · Philippe Schwaller · Jian Tang -
2023 Poster: Metropolis Sampling for Constrained Diffusion Models »
Nic Fishman · Leo Klarner · Emile Mathieu · Michael Hutchinson · Valentin De Bortoli -
2023 Poster: Tanimoto Random Features for Scalable Molecular Machine Learning »
Austin Tripp · Sergio Bacallado · Sukriti Singh · José Miguel Hernández-Lobato -
2023 Poster: AllSim: Systematic Simulation and Benchmarking of Repeated Resource Allocation Policies in Multi-User Systems with Varying Resources »
Jeroen Berrevoets · Daniel Jarrett · Alex Chan · Mihaela van der Schaar -
2023 Poster: DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models »
Boxin Wang · Weixin Chen · Hengzhi Pei · Chulin Xie · Mintong Kang · Chenhui Zhang · Chejian Xu · Zidi Xiong · Ritik Dutta · Rylan Schaeffer · Sang Truong · Simran Arora · Mantas Mazeika · Dan Hendrycks · Zinan Lin · Yu Cheng · Sanmi Koyejo · Dawn Song · Bo Li -
2023 Oral: DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models »
Boxin Wang · Weixin Chen · Hengzhi Pei · Chulin Xie · Mintong Kang · Chenhui Zhang · Chejian Xu · Zidi Xiong · Ritik Dutta · Rylan Schaeffer · Sang Truong · Simran Arora · Mantas Mazeika · Dan Hendrycks · Zinan Lin · Yu Cheng · Sanmi Koyejo · Dawn Song · Bo Li -
2022 : Practical Approaches for Fair Learning with Multitype and Multivariate Sensitive Attributes »
Tennison Liu · Alex Chan · Boris van Breugel · Mihaela van der Schaar -
2022 Poster: Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks »
Arian Jamasb · Ramon Viñas Torné · Eric Ma · Yuanqi Du · Charles Harris · Kexin Huang · Dominic Hall · Pietro Lió · Tom Blundell -
2022 Poster: Synthetic Model Combination: An Instance-wise Approach to Unsupervised Ensemble Learning »
Alex Chan · Mihaela van der Schaar -
2021 : Neural ODE Processes: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Jacob Moss · Pietro Lió -
2021 Workshop: Deep Generative Models and Downstream Applications »
José Miguel Hernández-Lobato · Yingzhen Li · Yichuan Zhang · Cheng Zhang · Austin Tripp · Weiwei Pan · Oren Rippel -
2021 : AI X Molecule »
Jian Tang -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2021 Poster: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 Poster: How to transfer algorithmic reasoning knowledge to learn new algorithms? »
Louis-Pascal Xhonneux · Andreea-Ioana Deac · Petar Veličković · Jian Tang -
2021 Poster: Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction »
Zhaocheng Zhu · Zuobai Zhang · Louis-Pascal Xhonneux · Jian Tang -
2021 Poster: Predicting Molecular Conformation via Dynamic Graph Score Matching »
Shitong Luo · Chence Shi · Minkai Xu · Jian Tang -
2021 Poster: Joint Modeling of Visual Objects and Relations for Scene Graph Generation »
Minghao Xu · Meng Qu · Bingbing Ni · Jian Tang -
2021 Poster: Scalable Thompson Sampling using Sparse Gaussian Process Models »
Sattar Vakili · Henry Moss · Artem Artemev · Vincent Dutordoir · Victor Picheny -
2020 Poster: Graph Policy Network for Transferable Active Learning on Graphs »
Shengding Hu · Zheng Xiong · Meng Qu · Xingdi Yuan · Marc-Alexandre Côté · Zhiyuan Liu · Jian Tang -
2020 Poster: Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining »
Austin Tripp · Erik Daxberger · José Miguel Hernández-Lobato -
2020 Poster: Towards Interpretable Natural Language Understanding with Explanations as Latent Variables »
Wangchunshu Zhou · Jinyi Hu · Hanlin Zhang · Xiaodan Liang · Maosong Sun · Chenyan Xiong · Jian Tang -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2019 Poster: vGraph: A Generative Model for Joint Community Detection and Node Representation Learning »
Fan-Yun Sun · Meng Qu · Jordan Hoffmann · Chin-Wei Huang · Jian Tang -
2019 Poster: Probabilistic Logic Neural Networks for Reasoning »
Meng Qu · Jian Tang -
2018 : Contributed Work »
Thaer Moustafa Dieb · Aditya Balu · Amir H. Khasahmadi · Viraj Shah · Boris Knyazev · Payel Das · Garrett Goh · Georgy Derevyanko · Gianni De Fabritiis · Reiko Hagawa · John Ingraham · David Belanger · Jialin Song · Kim Nicoli · Miha Skalic · Michelle Wu · Niklas Gebauer · Peter Bjørn Jørgensen · Ryan-Rhys Griffiths · Shengchao Liu · Sheshera Mysore · Hai Leong Chieu · Philippe Schwaller · Bart Olsthoorn · Bianca-Cristina Cristescu · Wei-Cheng Tseng · Seongok Ryu · Iddo Drori · Kevin Yang · Soumya Sanyal · Zois Boukouvalas · Rishi Bedi · Arindam Paul · Sambuddha Ghosal · Daniil Bash · Clyde Fare · Zekun Ren · Ali Oskooei · Minn Xuan Wong · Paul Sinz · Théophile Gaudin · Wengong Jin · Paul Leu -
2017 : Poster session 1 »
Van-Doan Nguyen · Stephan Eismann · Haozhen Wu · Garrett Goh · Kristina Preuer · Thomas Unterthiner · Matthew Ragoza · Tien-Lam PHAM · Günter Klambauer · Andrea Rocchetto · Maxwell Hutchinson · Qian Yang · Rafael Gomez-Bombarelli · Sheshera Mysore · Brooke Husic · Ryan-Rhys Griffiths · Masashi Tsubaki · Emma Strubell · Philippe Schwaller · Théophile Gaudin · Michael Brenner · Li Li