Timezone: »
Finding strong gravitational lenses in astronomical images allows us to assess cosmological theories and understand the large-scale structure of the universe. Previous works on lens detection do not quantify uncertainties in lens parameter estimates or scale to modern surveys. We present a fully amortized Bayesian procedure for lens detection that overcomes these limitations. Unlike traditional variational inference, in which training minimizes the reverse Kullback-Leibler (KL) divergence, our method is trained with an expected forward KL divergence. Using synthetic GalSim images and real Sloan Digital Sky Survey (SDSS) images, we demonstrate that amortized inference trained with the forward KL produces well-calibrated uncertainties in both lens detection and parameter estimation.
Author Information
Yash Patel (University of Michigan)
Jeffrey Regier (University of Michigan)
More from the Same Authors
-
2021 : An Empirical Comparison of GANs and Normalizing Flows for Density Estimation »
TIanci Liu · Jeffrey Regier -
2022 : Statistical Inference for Coadded Astronomical Images »
Mallory Wang · Ismael Mendoza · Jeffrey Regier · Camille Avestruz · Cheng Wang -
2022 : RL Boltzmann Generators for Conformer Generation in Data-Sparse Environments »
Yash Patel · Ambuj Tewari -
2022 : Dynamic Survival Transformers for Causal Inference with Electronic Health Records »
Prayag Chatha · Yixin Wang · Zhenke Wu · Jeffrey Regier -
2022 : Dynamic Survival Transformers for Causal Inference with Electronic Health Records »
Prayag Chatha · Yixin Wang · Zhenke Wu · Jeffrey Regier -
2022 Poster: Normalizing Flows for Knockoff-free Controlled Feature Selection »
Derek Hansen · Brian Manzo · Jeffrey Regier -
2020 Poster: Decision-Making with Auto-Encoding Variational Bayes »
Romain Lopez · Pierre Boyeau · Nir Yosef · Michael Jordan · Jeffrey Regier -
2018 Poster: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Oral: Stochastic Cubic Regularization for Fast Nonconvex Optimization »
Nilesh Tripuraneni · Mitchell Stern · Chi Jin · Jeffrey Regier · Michael Jordan -
2018 Poster: Information Constraints on Auto-Encoding Variational Bayes »
Romain Lopez · Jeffrey Regier · Michael Jordan · Nir Yosef -
2017 Poster: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2017 Spotlight: Fast Black-box Variational Inference through Stochastic Trust-Region Optimization »
Jeffrey Regier · Michael Jordan · Jon McAuliffe -
2015 Poster: A Gaussian Process Model of Quasar Spectral Energy Distributions »
Andrew Miller · Albert Wu · Jeffrey Regier · Jon McAuliffe · Dustin Lang · Mr. Prabhat · David Schlegel · Ryan Adams