Timezone: »

 
Fast Benchmarking of Accuracy vs. Training Time with Cyclic Learning Rates
Jacob Portes · Davis Blalock · Cory Stephenson · Jonathan Frankle
Event URL: https://openreview.net/forum?id=Uad23IcIEs »

Benchmarking the tradeoff between neural network accuracy and training time is computationally expensive. Here we show how a multiplicative cyclic learning rate schedule can be used to construct a tradeoff curve in a single training run. We generate cyclic tradeoff curves for combinations of training methods such as Blurpool, Channels Last, Label Smoothing and MixUp, and highlight how these cyclic tradeoff curves can be used to efficiently evaluate the effects of algorithmic choices on network training.

Author Information

Jacob Portes (MosaicML)
Jacob Portes

I am interested in developing experimentally motivated theories of both artificial and biological neural networks. I recently finished my PhD in the Center for Theoretical Neuroscience at Columbia University. I like it when machine learning informs neuroscience, and when neuroscience inspires machine learning. As of July 2022, I am a Research Scientist at MosaicML.

Davis Blalock (MIT)
Cory Stephenson (Intel)
Jonathan Frankle (MIT CSAIL)

More from the Same Authors

  • 2022 : Unmasking the Lottery Ticket Hypothesis: Efficient Adaptive Pruning for Finding Winning Tickets »
    Mansheej Paul · Feng Chen · Brett Larsen · Jonathan Frankle · Surya Ganguli · Gintare Karolina Dziugaite
  • 2022 : On Convexity and Linear Mode Connectivity in Neural Networks »
    David Yunis · Kumar Kshitij Patel · Pedro Savarese · Gal Vardi · Jonathan Frankle · Matthew Walter · Karen Livescu · Michael Maire
  • 2022 : The Effect of Data Dimensionality on Neural Network Prunability »
    Zachary Ankner · Alex Renda · Gintare Karolina Dziugaite · Jonathan Frankle · Tian Jin
  • 2022 Poster: Lottery Tickets on a Data Diet: Finding Initializations with Sparse Trainable Networks »
    Mansheej Paul · Brett Larsen · Surya Ganguli · Jonathan Frankle · Gintare Karolina Dziugaite
  • 2022 Poster: Pruning’s Effect on Generalization Through the Lens of Training and Regularization »
    Tian Jin · Michael Carbin · Dan Roy · Jonathan Frankle · Gintare Karolina Dziugaite
  • 2022 Poster: Distinguishing Learning Rules with Brain Machine Interfaces »
    Jacob Portes · Christian Schmid · James M Murray
  • 2020 : Pruning Neural Networks at Initialization: Why Are We Missing the Mark? »
    Jonathan Frankle
  • 2020 : Revisiting "Qualitatively Characterizing Neural Network Optimization Problems" »
    Jonathan Frankle
  • 2020 : Panel »
    Kilian Weinberger · Maria De-Arteaga · Shibani Santurkar · Jonathan Frankle · Deborah Raji
  • 2020 Poster: The Lottery Ticket Hypothesis for Pre-trained BERT Networks »
    Tianlong Chen · Jonathan Frankle · Shiyu Chang · Sijia Liu · Yang Zhang · Zhangyang Wang · Michael Carbin
  • 2019 : Contributed Session - Spotlight Talks »
    Jonathan Frankle · David Schwab · Ari Morcos · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · YiDing Jiang · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Sho Yaida · Muqiao Yang
  • 2019 : Lunch Break and Posters »
    Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Keun Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu
  • 2018 : Lunch »
    Hong Yu · Bhanu Pratap Singh Rawat · Arijit Ukil · Waheeda Saib · Jekaterina Novikova · John Hughes · Yuhui Zhang · Rahul V · Mi Jung Kim · Babak Taati · Hariharan Ravishankar · Harry Clifford · Hirofumi Kobayashi · Babak Taati · Keyang Xu · Yen-Chi Cheng · Timothy Cannings · Jayashree Kalpathy-Cramer · Jayashree Kalpathy-Cramer · Parinaz Sobhani · Kimis Perros · Wei-Hung Weng · Yordan Raykov · Lars Lorch · Mengqi Jin · Xue Teng · Michael Ferlaino · Marek Rei · Cédric Beaulac · Aman Verma · Sebastian Keller · Edmond Cunningham · Luc Evers · Victor Rodriguez · Vipul Satone · Dianbo Liu · Angeline Yasodhara · Geoff Tison · Ligin Solamen · Bryan He · Rahul Ladhania · Yipeng Shi · Md Nafiz Hamid · Pouria Mashouri · Woochan Hwang · Sejin Park · Xu Chen · Rachneet Kaur · Davis Blalock · Holly Wiberg · Parminder Bhatia · Kezi Yu · RUMENG LI · Jun Sakuma · Charles Ding · Aaron Babier · Yong Cai · A Pratap · Luke O'Connor · Allen Nie · Martin Kang · Ian Covert · Xun Wang · Zelun Luo · Serena Yeung · William Boag · Kazuki Tachikawa · Mary Saltz · Owen Lahav · Edward Lee · Eric Teasley · Michael Kamp · Nirmesh Patel · Vishwali Mhasawade · Maxim Samarin · Ryo Uchimido · Farzad Khalvati · Francisco Cruz · Laura Symul · Zaid Nabulsi · Mads Mihailescu · Rosalind Picard