Timezone: »
Poly-S: Analyzing and Improving Polytropon for Data-Efficient Multi-Task Learning
Lucas Page-Caccia · Edoardo Maria Ponti · Liyuan Liu · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni
Event URL: https://openreview.net/forum?id=g8xkPAiIlG8 »
Polytropon learns a set of modular skills, which can be re-combined and fine-tuned on novel tasks with limited data. In this paper, we first investigate what makes this method successful. Specifically, we extend the evaluation benchmark to include more datasets and design a series of controlled experiments to isolate the impact of different components.We then propose a new method, Poly-S, which allows for a more fine-grained control over the combination of skills, with no additional cost in compute at inference time. We evaluate Poly-S on three multi-task NLP benchmarks, and observe improvements over strong baselines.
Author Information
Lucas Page-Caccia (McGill University)
Edoardo Maria Ponti (University of Edinburgh)
Liyuan Liu (University of Illinois, Urbana Champaign)
Matheus Pereira (Microsoft)
Nicolas Le Roux (Microsoft Research)
Alessandro Sordoni (Microsoft Research Montreal)
More from the Same Authors
-
2022 : Target-based Surrogates for Stochastic Optimization »
Jonathan Lavington · Sharan Vaswani · Reza Babanezhad Harikandeh · Mark Schmidt · Nicolas Le Roux -
2022 : Reducing Forgetting in Federated Learning with Truncated Cross-Entropy »
Gwen Legate · Lucas Page-Caccia · Eugene Belilovsky -
2022 : Building a Subspace of Policies for Scalable Continual Learning »
Jean-Baptiste Gaya · Thang Long Doan · Lucas Page-Caccia · Laure Soulier · Ludovic Denoyer · Roberta Raileanu -
2020 Tutorial: (Track3) Policy Optimization in Reinforcement Learning Q&A »
Sham M Kakade · Martha White · Nicolas Le Roux -
2020 Poster: Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning »
Massimo Caccia · Pau Rodriguez · Oleksiy Ostapenko · Fabrice Normandin · Min Lin · Lucas Page-Caccia · Issam Hadj Laradji · Irina Rish · Alexandre Lacoste · David Vázquez · Laurent Charlin -
2020 Poster: An operator view of policy gradient methods »
Dibya Ghosh · Marlos C. Machado · Nicolas Le Roux -
2019 Poster: Online Continual Learning with Maximal Interfered Retrieval »
Rahaf Aljundi · Eugene Belilovsky · Tinne Tuytelaars · Laurent Charlin · Massimo Caccia · Min Lin · Lucas Page-Caccia -
2019 Poster: Metalearned Neural Memory »
Tsendsuren Munkhdalai · Alessandro Sordoni · TONG WANG · Adam Trischler -
2019 Poster: A Geometric Perspective on Optimal Representations for Reinforcement Learning »
Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle -
2019 Poster: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2019 Spotlight: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2018 Workshop: Wordplay: Reinforcement and Language Learning in Text-based Games »
Adam Trischler · Angeliki Lazaridou · Yonatan Bisk · Wendy Tay · Nate Kushman · Marc-Alexandre Côté · Alessandro Sordoni · Daniel Ricks · Tom Zahavy · Hal Daumé III -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2018 Poster: Towards Text Generation with Adversarially Learned Neural Outlines »
Sandeep Subramanian · Sai Rajeswar Mudumba · Alessandro Sordoni · Adam Trischler · Aaron Courville · Chris Pal -
2017 Poster: Z-Forcing: Training Stochastic Recurrent Networks »
Anirudh Goyal · Alessandro Sordoni · Marc-Alexandre Côté · Nan Rosemary Ke · Yoshua Bengio -
2012 Poster: A latent factor model for highly multi-relational data »
Rodolphe Jenatton · Nicolas Le Roux · Antoine Bordes · Guillaume R Obozinski -
2012 Poster: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2012 Oral: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2011 Workshop: Deep Learning and Unsupervised Feature Learning »
Yoshua Bengio · Adam Coates · Yann LeCun · Nicolas Le Roux · Andrew Y Ng -
2011 Poster: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Oral: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2007 Poster: Learning the 2-D Topology of Images »
Nicolas Le Roux · Yoshua Bengio · Pascal Lamblin · Marc Joliveau · Balázs Kégl -
2007 Poster: Topmoumoute Online Natural Gradient Algorithm »
Nicolas Le Roux · Pierre-Antoine Manzagol · Yoshua Bengio