Timezone: »
Knowledge graphs contain rich knowledge about various entities and the relational information among them, while temporal knowledge graphs (TKGs) describe and model the interactions of the entities over time. In this context, automatic temporal knowledge graph completion (TKGC) has gained great interest. Recent TKGC methods integrate advanced deep learning techniques, e.g., Transformers, and achieve superior model performance. However, this also introduces a large number of excessive parameters, which brings a heavier burden for parameter optimization. In this paper, we propose a simple but powerful graph encoder for TKGC, called TARGCN. TARGCN is parameter-efficient, and it extensively explores every entity's temporal context for learning contextualized representations. We find that instead of adopting various kinds of complex modules, it is more beneficial to efficiently capture the temporal contexts of entities. We experiment TARGCN on three benchmark datasets. Our model can achieve a more than 46% relative improvement on the GDELT dataset compared with state-of-the-art TKGC models. Meanwhile, it outperforms the strongest baseline on the ICEWS05-15 dataset with around 18% fewer parameters.
Author Information
Zifeng Ding (LMU Munich)
Yunpu Ma (LMU)
Bailan He (University of Munich, Ludwig-Maximilians-Universität München)
Zhen Han ( Ludwig Maximilian University of Munich)
Volker Tresp (Siemens AG)
More from the Same Authors
-
2021 : Towards Data-Free Domain Generalization »
Ahmed Frikha · Haokun Chen · Denis Krompaß · Thomas Runkler · Volker Tresp -
2022 : Analysis of the Attention in Tabular Language Models »
Aneta Koleva · Martin Ringsquandl · Volker Tresp -
2022 : Analysis of the Attention in Tabular Language Models »
Aneta Koleva · Martin Ringsquandl · Volker Tresp -
2020 : Poster 3: Variational Quantum Circuit Model for Knowledge Graph Embeddings by Yunpu Ma »
Yunpu Ma -
2019 : Poster Session »
Rishav Chourasia · Yichong Xu · Corinna Cortes · Chien-Yi Chang · Yoshihiro Nagano · So Yeon Min · Benedikt Boecking · Phi Vu Tran · Kamyar Ghasemipour · Qianggang Ding · Shouvik Mani · Vikram Voleti · Rasool Fakoor · Miao Xu · Kenneth Marino · Lisa Lee · Volker Tresp · Jean-Francois Kagy · Marvin Zhang · Barnabas Poczos · Dinesh Khandelwal · Adrien Bardes · Evan Shelhamer · Jiacheng Zhu · Ziming Li · Xiaoyan Li · Dmitrii Krasheninnikov · Ruohan Wang · Mayoore Jaiswal · Emad Barsoum · Suvansh Sanjeev · Theeraphol Wattanavekin · Qizhe Xie · Sifan Wu · Yuki Yoshida · David Kanaa · Sina Khoshfetrat Pakazad · Mehdi Maasoumy -
2014 Poster: Reducing the Rank in Relational Factorization Models by Including Observable Patterns »
Maximilian Nickel · Xueyan Jiang · Volker Tresp -
2014 Spotlight: Reducing the Rank in Relational Factorization Models by Including Observable Patterns »
Maximilian Nickel · Xueyan Jiang · Volker Tresp -
2006 Poster: Gaussian Process Models for Discriminative Link Prediction »
Kai Yu · Wei Chu · Shipeng Yu · Volker Tresp · Zhao Xu