Timezone: »
Deploying environmental measurement stations can be a costly and time consuming procedure, especially in regions which are remote or otherwise difficult to access, such as Antarctica. Therefore, it is crucial that sensors are placed as efficiently as possible, maximising the informativeness of their measurements. Previous approaches for identifying salient placement locations typically model the data with a Gaussian process (GP; Williams and Rasmussen, 2006). However, designing a GP covariance which captures the complex behaviour of non-stationary spatiotemporal data is a difficult task. Further, the computational cost of these models make them challenging to scale to large environmental datasets. In this work, we explore using convolutional Gaussian neural processes (ConvGNPs; Bruinsma et al., 2021; Markou et al., 2022) to address these issues. A ConvGNP is a meta-learning model which uses a neural network to parameterise a GP predictive. Our model is data-driven, flexible, efficient, and permits gridded or off-grid input data. Using simulated surface temperature fields over Antarctica as ground truth, we show that a ConvGNP outperforms a simple GP baseline in terms of predictive performance. We then use the ConvGNP in a temperature sensor placement toy experiment, yielding promising results.
Author Information
Tom Andersson (British Antarctic Survey)
Wessel Bruinsma (Microsoft Research AI4Science)
Efstratios Markou (University of Cambridge)
Daniel C. Jones (British Antarctic Survey)
Scott Hosking (British Antarctic Survey)
James Requeima (University of Cambridge / Invenia Labs)
Anna Vaughan (University of Cambridge)
Anna-Louise Ellis (Met Office)
Matthew Lazzara (University of Wisconsin-Madison)
Richard Turner (University of Cambridge)
More from the Same Authors
-
2022 : Ice Core Dating using Probabilistic Programming »
Aditya Ravuri · Tom Andersson · Ieva Kazlauskaite · William Tebbutt · Richard Turner · Scott Hosking · Neil Lawrence · Markus Kaiser -
2022 : Multi-fidelity experimental design for ice-sheet simulation »
Pierre Thodoroff · Markus Kaiser · Rosie Williams · Robert Arthern · Scott Hosking · Neil Lawrence · Ieva Kazlauskaite -
2022 : Contextual Squeeze-and-Excitation »
Massimiliano Patacchiola · John Bronskill · Aliaksandra Shysheya · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2022 : FiT: Parameter Efficient Few-shot Transfer Learning »
Aliaksandra Shysheya · John Bronskill · Massimiliano Patacchiola · Sebastian Nowozin · Richard Turner -
2022 : Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning Few-Shot Meta-Learners »
Elre Oldewage · John Bronskill · Richard Turner -
2022 : Panel »
Erin Grant · Richard Turner · Neil Houlsby · Priyanka Agrawal · Abhijeet Awasthi · Salomey Osei -
2022 Poster: Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification »
Massimiliano Patacchiola · John Bronskill · Aliaksandra Shysheya · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2021 Poster: How Tight Can PAC-Bayes be in the Small Data Regime? »
Andrew Foong · Wessel Bruinsma · David Burt · Richard Turner -
2021 Poster: Collapsed Variational Bounds for Bayesian Neural Networks »
Marcin Tomczak · Siddharth Swaroop · Andrew Foong · Richard Turner -
2021 Poster: Memory Efficient Meta-Learning with Large Images »
John Bronskill · Daniela Massiceti · Massimiliano Patacchiola · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2020 Poster: Efficient Low Rank Gaussian Variational Inference for Neural Networks »
Marcin Tomczak · Siddharth Swaroop · Richard Turner -
2020 Poster: Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes »
Andrew Foong · Wessel Bruinsma · Jonathan Gordon · Yann Dubois · James Requeima · Richard Turner -
2020 Poster: On the Expressiveness of Approximate Inference in Bayesian Neural Networks »
Andrew Foong · David Burt · Yingzhen Li · Richard Turner -
2020 Poster: VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data »
Chao Ma · Sebastian Tschiatschek · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2020 Poster: Continual Deep Learning by Functional Regularisation of Memorable Past »
Pingbo Pan · Siddharth Swaroop · Alexander Immer · Runa Eschenhagen · Richard Turner · Mohammad Emtiyaz Khan -
2020 Poster: Ensembling geophysical models with Bayesian Neural Networks »
Ushnish Sengupta · Matt Amos · Scott Hosking · Carl Edward Rasmussen · Matthew Juniper · Paul Young -
2020 Oral: Continual Deep Learning by Functional Regularisation of Memorable Past »
Pingbo Pan · Siddharth Swaroop · Alexander Immer · Runa Eschenhagen · Richard Turner · Mohammad Emtiyaz Khan -
2019 : Coffee Break & Poster Session »
Samia Mohinta · Andrea Agostinelli · Alexandra Moringen · Jee Hang Lee · Yat Long Lo · Wolfgang Maass · Blue Sheffer · Colin Bredenberg · Benjamin Eysenbach · Liyu Xia · Efstratios Markou · Jan Lichtenberg · Pierre Richemond · Tony Zhang · JB Lanier · Baihan Lin · William Fedus · Glen Berseth · Marta Sarrico · Matthew Crosby · Stephen McAleer · Sina Ghiassian · Franz Scherr · Guillaume Bellec · Darjan Salaj · Arinbjörn Kolbeinsson · Matthew Rosenberg · Jaehoon Shin · Sang Wan Lee · Guillermo Cecchi · Irina Rish · Elias Hajek -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes »
James Requeima · Jonathan Gordon · John Bronskill · Sebastian Nowozin · Richard Turner -
2019 Spotlight: Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes »
James Requeima · Jonathan Gordon · John Bronskill · Sebastian Nowozin · Richard Turner -
2019 Poster: Practical Deep Learning with Bayesian Principles »
Kazuki Osawa · Siddharth Swaroop · Mohammad Emtiyaz Khan · Anirudh Jain · Runa Eschenhagen · Richard Turner · Rio Yokota -
2018 Poster: Infinite-Horizon Gaussian Processes »
Arno Solin · James Hensman · Richard Turner -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2017 Poster: Streaming Sparse Gaussian Process Approximations »
Thang Bui · Cuong Nguyen · Richard Turner -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2016 Poster: Rényi Divergence Variational Inference »
Yingzhen Li · Richard Turner -
2015 Poster: Neural Adaptive Sequential Monte Carlo »
Shixiang (Shane) Gu · Zoubin Ghahramani · Richard Turner -
2015 Poster: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Poster: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2015 Spotlight: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Spotlight: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2014 Poster: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2014 Spotlight: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2011 Poster: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2011 Spotlight: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2009 Poster: Occlusive Components Analysis »
Jörg Lücke · Richard Turner · Maneesh Sahani · Marc Henniges -
2007 Workshop: Beyond Simple Cells: Probabilistic Models for Visual Cortical Processing »
Richard Turner · Pietro Berkes · Maneesh Sahani -
2007 Poster: Modeling Natural Sounds with Modulation Cascade Processes »
Richard Turner · Maneesh Sahani -
2007 Poster: On Sparsity and Overcompleteness in Image Models »
Pietro Berkes · Richard Turner · Maneesh Sahani