Timezone: »

 
Uncertainty Disentanglement with Non-stationary Heteroscedastic Gaussian Processes for Active Learning
Zeel Bharatkumar Patel · Nipun Batra · Kevin Murphy

Gaussian processes are Bayesian non-parametric models used in many areas. In this work, we propose a Non-stationary Heteroscedastic Gaussian process model which can be learned with gradient-based techniques. We demonstrate the interpretability of the proposed model by separating the overall uncertainty into aleatoric (irreducible) and epistemic (model) uncertainty. We illustrate the usability of derived epistemic uncertainty on active learning problems. We demonstrate the efficacy of our model with various ablations on multiple datasets.

Author Information

Zeel Bharatkumar Patel (IIT Gandhinagar)
Nipun Batra (IIT Gandhinagar)
Kevin Murphy (Google)

More from the Same Authors

  • 2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
    Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran
  • 2022 : Challenges in Gaussian Processes for Non Intrusive Load Monitoring »
    Aadesh Desai · Gautam Vashishtha · Zeel Bharatkumar Patel · Nipun Batra
  • 2022 Spotlight: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
    Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy
  • 2022 : Uncertainty Disentanglement with Non-stationary Heteroscedastic Gaussian Processes for Active Learning »
    Zeel Bharatkumar Patel
  • 2022 Poster: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
    Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy
  • 2021 Workshop: Bayesian Deep Learning »
    Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling
  • 2019 : Poster session »
    Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak
  • 2019 Workshop: Bayesian Deep Learning »
    Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling
  • 2019 Poster: Language as an Abstraction for Hierarchical Deep Reinforcement Learning »
    YiDing Jiang · Shixiang (Shane) Gu · Kevin Murphy · Chelsea Finn
  • 2019 Poster: Unsupervised learning of object structure and dynamics from videos »
    Matthias Minderer · Chen Sun · Ruben Villegas · Forrester Cole · Kevin Murphy · Honglak Lee
  • 2018 Workshop: Bayesian Deep Learning »
    Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling
  • 2017 Workshop: Bayesian Deep Learning »
    Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling
  • 2016 Workshop: Bayesian Deep Learning »
    Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling
  • 2016 Workshop: Advances in Approximate Bayesian Inference »
    Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan
  • 2015 Poster: Bayesian dark knowledge »
    Anoop Korattikara Balan · Vivek Rathod · Kevin Murphy · Max Welling