Timezone: »
Recently, zero-inflated Gaussian processes (GPs) have been proposed as probabilistic machine learning models for observed spatio-temporal data that contain many close-to-zero entries. In this work, we extend zero-inflated GPs to sparse count data via the zero-inflated Poisson likelihood. This change no longer admits a closed-form computation of the training objective, so we use automatic differentiation variational inference to perform approximate posterior estimation. Our motivating application is the prediction of the number of opioid-related overdose deaths that will occur in the next 3 months in each of 1620 census tracts across the state of Massachusetts, given historical decedent data and socio-economic covariates. We find zero-inflated GPs can prioritize regions in need of near-term public health interventions better than alternative models at finer spatial and temporal resolutions than most prior efforts. Surprisingly, we find that this model is successful even when using Normal likelihoods instead of the zero-inflated Poisson.
Author Information
Kyle Heuton (Tufts University)
Shikhar Shrestha (Tufts University School of Medicine)
Thomas Stopka (Tufts University)
Jennifer Pustz (Tufts University)
Michael Hughes (Tufts University)
More from the Same Authors
-
2021 : The Tufts fNIRS Mental Workload Dataset & Benchmark for Brain-Computer Interfaces that Generalize »
zhe huang · Liang Wang · Giles Blaney · Christopher Slaughter · Devon McKeon · Ziyu Zhou · Robert Jacob · Michael Hughes -
2022 : Semi-supervised Learning from Uncurated Echocardiogram Images with Fix-A-Step »
Zhe Huang · Mary-Joy Sidhom · Benjamin Wessler · Michael Hughes -
2022 : Prediction-Constrained Markov Models for Medical Time Series with Missing Data and Few Labels »
Preetish Rath · Gabe Hope · Kyle Heuton · Erik Sudderth · Michael Hughes -
2022 : Prediction-Constrained Markov Models for Medical Time Series with Missing Data and Few Labels »
Preetish Rath · Gabe Hope · Kyle Heuton · Erik Sudderth · Michael Hughes -
2021 Workshop: Your Model is Wrong: Robustness and misspecification in probabilistic modeling »
Diana Cai · Sameer Deshpande · Michael Hughes · Tamara Broderick · Trevor Campbell · Nick Foti · Barbara Engelhardt · Sinead Williamson -
2021 Poster: Dynamical Wasserstein Barycenters for Time-series Modeling »
Kevin Cheng · Shuchin Aeron · Michael Hughes · Eric L Miller -
2020 : Invited Talk: Mike Hughes - The Case for Prediction Constrained Training »
Michael Hughes -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2018 Workshop: All of Bayesian Nonparametrics (Especially the Useful Bits) »
Diana Cai · Trevor Campbell · Michael Hughes · Tamara Broderick · Nick Foti · Sinead Williamson -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2016 Workshop: Practical Bayesian Nonparametrics »
Nick Foti · Tamara Broderick · Trevor Campbell · Michael Hughes · Jeffrey Miller · Aaron Schein · Sinead Williamson · Yanxun Xu -
2015 Poster: Scalable Adaptation of State Complexity for Nonparametric Hidden Markov Models »
Michael Hughes · William Stephenson · Erik Sudderth -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2013 Poster: Memoized Online Variational Inference for Dirichlet Process Mixture Models »
Michael Hughes · Erik Sudderth -
2012 Poster: Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data »
Michael Hughes · Emily Fox · Erik Sudderth