Timezone: »
HyperBO+: Pre-training a universal hierarchical Gaussian process prior for Bayesian optimization
Zhou Fan · Xinran Han · Zi Wang
We present HyperBO+: a framework of pre-training a hierarchical Gaussian process that enables the same prior to work universally for Bayesian optimization on functions with different domains. We propose a two-step pre-training method and demonstrate its empirical success on challenging black-box function optimization problems with varied input dimensions and search spaces.
Author Information
Zhou Fan (Harvard University)
Xinran Han (Harvard University)
Zi Wang (Google Brain)
More from the Same Authors
-
2022 Workshop: Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems »
Alexander Terenin · Elizaveta Semenova · Geoff Pleiss · Zi Wang -
2022 Poster: Towards Learning Universal Hyperparameter Optimizers with Transformers »
Yutian Chen · Xingyou Song · Chansoo Lee · Zi Wang · Richard Zhang · David Dohan · Kazuya Kawakami · Greg Kochanski · Arnaud Doucet · Marc'Aurelio Ranzato · Sagi Perel · Nando de Freitas