Timezone: »
As experimental tools in the physical and life sciences become increasingly sophisticated and costly, there is a need to optimize the choice of experimental parameters to maximize the informativeness of the data and minimize cost. When designing a scientific experiment, an experimentalist often faces a choice among a suite of data collection modalities or instruments with varying fidelities and costs. Analyzing the tradeoff between high-fidelity, high-cost measurements and low-fidelity, low-cost measurements is often difficult due to complex data collection procedures and budget constraints. Here, we propose an approach for designing such experiments using Bayesian power posteriors, which naturally account for instruments with varying fidelities. Whereas existing approaches for multi-fidelity experimental design are often bespoke for particular data models and involve complicated inference schemes, our approach using power posteriors is generically applicable for any probabilistic model and straightforward to implement. We show that our approach can be combined with a model of experiment cost to allow for multi-fidelity experimental design. We demonstrate our approach through a series of simulated examples and an application to a genomics experiment.
Author Information
Andrew Jones (Princeton University)
Diana Cai (Princeton University)
Barbara Engelhardt (Princeton University)
More from the Same Authors
-
2021 Spotlight: Slice Sampling Reparameterization Gradients »
David Zoltowski · Diana Cai · Ryan Adams -
2021 : Multi-Group Reinforcement Learning for Maternal Health in Childbirth »
Barbara Engelhardt · Promise Ekpo -
2022 : Sequential Gaussian Processes for Online Learning of Nonstationary Functions »
Michael Minyi Zhang · Bianca Dumitrascu · Sinead Williamson · Barbara Engelhardt -
2022 : Kernel Density Bayesian Inverse Reinforcement Learning »
Aishwarya Mandyam · Didong Li · Diana Cai · Andrew Jones · Barbara Engelhardt -
2022 : Multi-group Reinforcement Learning for Electrolyte Repletion »
Promise Ekpo · Barbara Engelhardt -
2022 : Spatially-aware dimension reduction of transcriptomics data »
Lauren Okamoto · Andrew Jones · Archit Verma · Barbara E Engelhardt -
2022 Poster: Multi-fidelity Monte Carlo: a pseudo-marginal approach »
Diana Cai · Ryan Adams -
2021 : Invited talk (ML) - Barbara Engelhardt »
Barbara Engelhardt -
2021 Workshop: Your Model is Wrong: Robustness and misspecification in probabilistic modeling »
Diana Cai · Sameer Deshpande · Michael Hughes · Tamara Broderick · Trevor Campbell · Nick Foti · Barbara Engelhardt · Sinead Williamson -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Poster: Slice Sampling Reparameterization Gradients »
David Zoltowski · Diana Cai · Ryan Adams -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · GaĆ«l Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 : In conversations: Daphne Koller and Barbara Englehardt »
Daphne Koller · Barbara Engelhardt -
2019 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks -
2018 : Barbara Engelhardt »
Barbara Engelhardt -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2018 Poster: A Bayesian Nonparametric View on Count-Min Sketch »
Diana Cai · Michael Mitzenmacher · Ryan Adams -
2016 Workshop: Machine Learning in Computational Biology »
Gerald Quon · Sara Mostafavi · James Y Zou · Barbara Engelhardt · Oliver Stegle · Nicolo Fusi