Timezone: »
We propose a method to learn predictors that are invariant under counterfactual changes of certain covariates. This method is useful when the prediction target is causally influenced by covariates that should not affect the predictor output. For instance, this could prevent an object recognition model from being influenced by position, orientation, or scale of the object itself. We propose a model-agnostic regularization term based on conditional kernel mean embeddings to enforce \counterfactual invariance during training. We prove the soundness of our method, which can handle mixed categorical and continuous multivariate attributes. Empirical results on synthetic and real-world data demonstrate the efficacy of our method in a variety of settings.
Author Information
Cecilia Casolo (Technische Universität München)
Krikamol Muandet (Max Planck Institute for Intelligent Systems)
More from the Same Authors
-
2022 Workshop: A causal view on dynamical systems »
Sören Becker · Alexis Bellot · Cecilia Casolo · Niki Kilbertus · Sara Magliacane · Yuyang (Bernie) Wang -
2022 Poster: AutoML Two-Sample Test »
Jonas M. Kübler · Vincent Stimper · Simon Buchholz · Krikamol Muandet · Bernhard Schölkopf -
2021 Workshop: Machine Learning Meets Econometrics (MLECON) »
David Bruns-Smith · Arthur Gretton · Limor Gultchin · Niki Kilbertus · Krikamol Muandet · Evan Munro · Angela Zhou -
2020 Poster: MATE: Plugging in Model Awareness to Task Embedding for Meta Learning »
Xiaohan Chen · Zhangyang Wang · Siyu Tang · Krikamol Muandet -
2020 Poster: Dual Instrumental Variable Regression »
Krikamol Muandet · Arash Mehrjou · Si Kai Lee · Anant Raj -
2020 Poster: Learning Kernel Tests Without Data Splitting »
Jonas Kübler · Wittawat Jitkrittum · Bernhard Schölkopf · Krikamol Muandet -
2020 Poster: A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings »
Junhyung Park · Krikamol Muandet -
2014 Poster: Kernel Mean Estimation via Spectral Filtering »
Krikamol Muandet · Bharath Sriperumbudur · Bernhard Schölkopf -
2012 Poster: Learning from Distributions via Support Measure Machines »
Krikamol Muandet · Kenji Fukumizu · Francesco Dinuzzo · Bernhard Schölkopf -
2012 Spotlight: Learning from Distributions via Support Measure Machines »
Krikamol Muandet · Kenji Fukumizu · Francesco Dinuzzo · Bernhard Schölkopf