Timezone: »
Poster
tntorch: Tensor Network Learning with PyTorch
Mikhail Usvyatsov · Rafael Ballester-Ripoll · Konrad Schindler
@
We present tntorch, a tensor learning framework that supports multiple decompositions (including Candecomp/Parafac, Tucker, and Tensor Train) under a unified interface. With our library, the user can learn and handle low-rank tensors with automatic differentiation, seamless GPU support, and the convenience of PyTorch's API. Besides decomposition algorithms, tntorch implements differentiable tensor algebra, rank truncation, cross-approximation, batch processing, comprehensive tensor arithmetics, and more.
Author Information
Mikhail Usvyatsov (ETH Zürich)
Rafael Ballester-Ripoll
Konrad Schindler (ETH Zürich)
More from the Same Authors
-
2022 Spotlight: tntorch: Tensor Network Learning with PyTorch »
Mikhail Usvyatsov · Rafael Ballester-Ripoll · Konrad Schindler -
2022 Spotlight: Lightning Talks 1A-1 »
Siba Smarak Panigrahi · Xuhong Li · Mikhail Usvyatsov · Shaohan Chen · Sohan Patnaik · Haoyi Xiong · Nikolaos V Sahinidis · Rafael Ballester-Ripoll · Chuanhou Gao · Xingjian Li · Konrad Schindler · Xuanyu Wu · Zeyu Chen · Dejing Dou -
2022 Poster: FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation »
Mehmet Ozgur Turkoglu · Alexander Becker · Hüseyin Anil Gündüz · Mina Rezaei · Bernd Bischl · Rodrigo Caye Daudt · Stefano D'Aronco · Jan Wegner · Konrad Schindler