Timezone: »
Panel
Guy Van den Broeck · Cassio de Campos · Denis Maua · Kristian Kersting · Rianne van den Berg
Mon Dec 05 10:05 AM -- 10:30 AM (PST) @
Author Information
Guy Van den Broeck (UCLA)
I am an Assistant Professor and Samueli Fellow at UCLA, in the Computer Science Department, where I direct the Statistical and Relational Artificial Intelligence (StarAI) lab. My research interests are in Machine Learning (Statistical Relational Learning, Tractable Learning), Knowledge Representation and Reasoning (Graphical Models, Lifted Probabilistic Inference, Knowledge Compilation), Applications of Probabilistic Reasoning and Learning (Probabilistic Programming, Probabilistic Databases), and Artificial Intelligence in general.
Cassio de Campos (Eindhoven University of Technology)
Denis Maua (University of Sao Paulo)
Kristian Kersting (TU Darmstadt)
Rianne van den Berg (Microsoft Research)
More from the Same Authors
-
2021 Spotlight: Tractable Regularization of Probabilistic Circuits »
Anji Liu · Guy Van den Broeck -
2022 : Mixture of Gaussian Processes with Probabilistic Circuits for Multi-Output Regression »
Mingye Zhu · Zhongjie Yu · Martin Trapp · Arseny Skryagin · Kristian Kersting -
2022 : Protein structure generation via folding diffusion »
Kevin Wu · Kevin Yang · Rianne van den Berg · James Zou · Alex X Lu · Ava Soleimany -
2023 Poster: Do Not Marginalize Mechanisms, Rather Consolidate! »
Moritz Willig · Matej Zečević · Devendra Dhami · Kristian Kersting -
2023 Poster: A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints »
Kareem Ahmed · Kai-Wei Chang · Guy Van den Broeck -
2023 Poster: Collapsed Inference for Bayesian Deep Learning »
Zhe Zeng · Guy Van den Broeck -
2023 Poster: Interpretable and Explainable Logical Policies via Neurally Guided Symbolic Abstraction »
Quentin Delfosse · Hikaru Shindo · Devendra Dhami · Kristian Kersting -
2023 Poster: ATMAN: Understanding Transformer Predictions Through Memory Efficient Attention Manipulation »
Björn Deiseroth · Mayukh Deb · Samuel Weinbach · Manuel Brack · Patrick Schramowski · Kristian Kersting -
2023 Poster: SEGA: Instructing Text-to-Image Models using Semantic Guidance »
Manuel Brack · Felix Friedrich · Dominik Hintersdorf · Lukas Struppek · Patrick Schramowski · Kristian Kersting -
2023 Poster: A Unified Approach to Count-Based Weakly Supervised Learning »
Vinay Shukla · Zhe Zeng · Kareem Ahmed · Guy Van den Broeck -
2023 Poster: MultiFusion: Fusing Pre-Trained Models for Multi-Lingual, Multi-Modal Image Generation »
Marco Bellagente · Hannah Teufel · Manuel Brack · Björn Deiseroth · Felix Friedrich · Constantin Eichenberg · Andrew Dai · Robert Baldock · Souradeep Nanda · Koen Oostermeijer · Andres Felipe Cruz-Salinas · Patrick Schramowski · Kristian Kersting · Samuel Weinbach -
2023 Poster: Characteristic Circuit »
Zhongjie Yu · Martin Trapp · Kristian Kersting -
2023 Oral: Characteristic Circuit »
Zhongjie Yu · Martin Trapp · Kristian Kersting -
2022 : Panel Discussion: "Heading for a Unifying View on nCSI" »
Tobias Gerstenberg · Sriraam Natarajan · - Mausam · Guy Van den Broeck · Devendra Dhami -
2022 : AI can learn from data. But can it learn to reason? »
Guy Van den Broeck -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2022 Poster: Semantic Probabilistic Layers for Neuro-Symbolic Learning »
Kareem Ahmed · Stefano Teso · Kai-Wei Chang · Guy Van den Broeck · Antonio Vergari -
2022 Poster: Sparse Probabilistic Circuits via Pruning and Growing »
Meihua Dang · Anji Liu · Guy Van den Broeck -
2021 : Invited Talk #3: Rianne van den Berg »
Rianne van den Berg -
2021 Workshop: Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) »
Breandan Considine · Disha Shrivastava · David Yu-Tung Hui · Chin-Wei Huang · Shawn Tan · Xujie Si · Prakash Panangaden · Guy Van den Broeck · Daniel Tarlow -
2021 : AI workloads inside databases »
Guy Van den Broeck · Alexander Ratner · Benjamin Moseley · Konstantinos Karanasos · Parisa Kordjamshidi · Molham Aref · Arun Kumar -
2021 Poster: Structured Denoising Diffusion Models in Discrete State-Spaces »
Jacob Austin · Daniel D. Johnson · Jonathan Ho · Daniel Tarlow · Rianne van den Berg -
2021 Poster: A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference »
Antonio Vergari · YooJung Choi · Anji Liu · Stefano Teso · Guy Van den Broeck -
2021 : PYLON: A PyTorch Framework for Learning with Constraints »
Kareem Ahmed · Tao Li · Nu Mai Thy Ton · Quan Guo · Kai-Wei Chang · Parisa Kordjamshidi · Vivek Srikumar · Guy Van den Broeck · Sameer Singh -
2021 Poster: Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models »
Matej Zečević · Devendra Dhami · Athresh Karanam · Sriraam Natarajan · Kristian Kersting -
2021 Oral: A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference »
Antonio Vergari · YooJung Choi · Anji Liu · Stefano Teso · Guy Van den Broeck -
2021 Poster: Tractable Regularization of Probabilistic Circuits »
Anji Liu · Guy Van den Broeck -
2020 : Contributed talks 6: Group Fairness by Probabilistic Modeling with Latent Fair Decisions »
YooJung Choi · Guy Van den Broeck -
2020 Poster: Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical Approximations »
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck -
2020 Spotlight: Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical Approximations »
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck -
2020 Session: Orals & Spotlights Track 26: Graph/Relational/Theory »
Joan Bruna · Cassio de Campos -
2020 Poster: Joints in Random Forests »
Alvaro Correia · Robert Peharz · Cassio de Campos -
2020 Poster: A Spectral Energy Distance for Parallel Speech Synthesis »
Alexey Gritsenko · Tim Salimans · Rianne van den Berg · Jasper Snoek · Nal Kalchbrenner -
2020 Poster: Counterexample-Guided Learning of Monotonic Neural Networks »
Aishwarya Sivaraman · Golnoosh Farnadi · Todd Millstein · Guy Van den Broeck -
2019 : Invited Talk (Guy Van den Broeck) »
Guy Van den Broeck -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković -
2019 Poster: Towards Hardware-Aware Tractable Learning of Probabilistic Models »
Laura Galindez Olascoaga · Wannes Meert · Nimish Shah · Marian Verhelst · Guy Van den Broeck -
2019 Poster: Integer Discrete Flows and Lossless Compression »
Emiel Hoogeboom · Jorn Peters · Rianne van den Berg · Max Welling -
2019 Poster: On Tractable Computation of Expected Predictions »
Pasha Khosravi · YooJung Choi · Yitao Liang · Antonio Vergari · Guy Van den Broeck -
2019 Poster: Smoothing Structured Decomposable Circuits »
Andy Shih · Guy Van den Broeck · Paul Beame · Antoine Amarilli -
2019 Spotlight: Smoothing Structured Decomposable Circuits »
Andy Shih · Guy Van den Broeck · Paul Beame · Antoine Amarilli -
2018 Poster: Approximate Knowledge Compilation by Online Collapsed Importance Sampling »
Tal Friedman · Guy Van den Broeck -
2018 Oral: Approximate Knowledge Compilation by Online Collapsed Importance Sampling »
Tal Friedman · Guy Van den Broeck -
2017 Workshop: NIPS Highlights (MLTrain), Learn How to code a paper with state of the art frameworks »
Alex Dimakis · Nikolaos Vasiloglou · Guy Van den Broeck · Alexander Ihler · Assaf Araki -
2016 Poster: New Liftable Classes for First-Order Probabilistic Inference »
Seyed Mehran Kazemi · Angelika Kimmig · Guy Van den Broeck · David Poole -
2016 Poster: Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables »
Mauro Scanagatta · Giorgio Corani · Cassio de Campos · Marco Zaffalon -
2015 Poster: Learning Bayesian Networks with Thousands of Variables »
Mauro Scanagatta · Cassio de Campos · Giorgio Corani · Marco Zaffalon -
2015 Poster: Tractable Learning for Complex Probability Queries »
Jessa Bekker · Jesse Davis · Arthur Choi · Adnan Darwiche · Guy Van den Broeck -
2014 Poster: Advances in Learning Bayesian Networks of Bounded Treewidth »
Siqi Nie · Denis Maua · Cassio P de Campos · Qiang Ji -
2014 Spotlight: Advances in Learning Bayesian Networks of Bounded Treewidth »
Siqi Nie · Denis Maua · Cassio P de Campos · Qiang Ji -
2014 Poster: Global Sensitivity Analysis for MAP Inference in Graphical Models »
Jasper De Bock · Cassio P de Campos · Alessandro Antonucci -
2013 Poster: On the Complexity and Approximation of Binary Evidence in Lifted Inference »
Guy Van den Broeck · Adnan Darwiche -
2013 Spotlight: On the Complexity and Approximation of Binary Evidence in Lifted Inference »
Guy Van den Broeck · Adnan Darwiche -
2011 Poster: On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference »
Guy Van den Broeck -
2011 Poster: Solving Decision Problems with Limited Information »
Denis Maua · Cassio P de Campos -
2011 Spotlight: Solving Decision Problems with Limited Information »
Denis Maua · Cassio P de Campos -
2011 Oral: On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference »
Guy Van den Broeck