Timezone: »
Author Information
Mayee Chen (Stanford University)
Alexander Ratner (Stanford University)
Robert Nowak (University of Wisconsion-Madison)
Cody Coleman (Stanford University)
Cody is a computer science Ph.D. candidate at Stanford University, is advised by Professors Matei Zaharia and Peter Bailis and is supported by a National Science Foundation Fellowship. As a member of the Stanford DAWN Project, Cody’s research is focused on democratizing machine learning through tools and infrastructure that enable more than the most well-funded teams to create innovative and impactful systems; this includes reducing the cost of producing state-of-the-art models and creating novel abstractions that simplify machine learning development and deployment. Prior to joining Stanford, he completed his B.S. and M.Eng. in electrical engineering and computer science at the Massachusetts Institute of Technology.
Ramya Korlakai Vinayak (University of Wisconsin-Madison)
More from the Same Authors
-
2021 : WRENCH: A Comprehensive Benchmark for Weak Supervision »
Jieyu Zhang · Yue Yu · · Yujing Wang · Yaming Yang · Mao Yang · Alexander Ratner -
2022 : Anomaly Detection with Multiple Reference Datasets in High Energy Physics »
Mayee Chen · Benjamin Nachman · Frederic Sala -
2022 : A Better Way to Decay: Proximal Gradient Training Algorithms for Neural Nets »
Liu Yang · Jifan Zhang · Joseph Shenouda · Dimitris Papailiopoulos · Kangwook Lee · Robert Nowak -
2022 : Q & A »
Frederic Sala · Ramya Korlakai Vinayak -
2022 Tutorial: Theory and Practice of Efficient and Accurate Dataset Construction »
Frederic Sala · Ramya Korlakai Vinayak -
2022 : Tutorial part 1 »
Frederic Sala · Ramya Korlakai Vinayak -
2022 Poster: Efficient Active Learning with Abstention »
Yinglun Zhu · Robert Nowak -
2022 Poster: Active Learning with Neural Networks: Insights from Nonparametric Statistics »
Yinglun Zhu · Robert Nowak -
2022 Poster: One for All: Simultaneous Metric and Preference Learning over Multiple Users »
Gregory Canal · Blake Mason · Ramya Korlakai Vinayak · Robert Nowak -
2022 Poster: Understanding Programmatic Weak Supervision via Source-aware Influence Function »
Jieyu Zhang · Haonan Wang · Cheng-Yu Hsieh · Alexander Ratner -
2022 Poster: The Dollar Street Dataset: Images Representing the Geographic and Socioeconomic Diversity of the World »
William Gaviria Rojas · Sudnya Diamos · Keertan Kini · David Kanter · Vijay Janapa Reddi · Cody Coleman -
2021 : Q&A Lightning Talks - Responsibility and Ethics »
Vijay Janapa Reddi · Cody Coleman -
2021 : Q&A Lightning Talks - Challenge Problems and Theory »
Cody Coleman · Vijay Janapa Reddi -
2021 : Q&A Lightning Talk - Benchmarks and Challenges »
Cody Coleman · Vijay Janapa Reddi -
2021 : Lightning Talks - Benchmarks and Challenges »
Vijay Janapa Reddi · Cody Coleman -
2021 Workshop: Data Centric AI »
Andrew Ng · Lora Aroyo · Greg Diamos · Cody Coleman · Vijay Janapa Reddi · Joaquin Vanschoren · Carole-Jean Wu · Sharon Zhou · Lynn He -
2021 : AI workloads inside databases »
Guy Van den Broeck · Alexander Ratner · Benjamin Moseley · Konstantinos Karanasos · Parisa Kordjamshidi · Molham Aref · Arun Kumar -
2021 : WRENCH: A Comprehensive Benchmark for Weak Supervision »
Jieyu Zhang · Yue Yu · · Yujing Wang · Yaming Yang · Mao Yang · Alexander Ratner -
2021 Poster: Pure Exploration in Kernel and Neural Bandits »
Yinglun Zhu · Dongruo Zhou · Ruoxi Jiang · Quanquan Gu · Rebecca Willett · Robert Nowak -
2020 : Q & A and Panel Session with Dan Weld, Kristen Grauman, Scott Yih, Emma Brunskill, and Alex Ratner »
Kristen Grauman · Wen-tau Yih · Alexander Ratner · Emma Brunskill · Douwe Kiela · Daniel S. Weld -
2020 : Dataset Curation via Active Learning »
Robert Nowak -
2020 Poster: On Regret with Multiple Best Arms »
Yinglun Zhu · Robert Nowak -
2020 Poster: Finding All $\epsilon$-Good Arms in Stochastic Bandits »
Blake Mason · Lalit Jain · Ardhendu Tripathy · Robert Nowak -
2019 Poster: Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices »
Vincent Chen · Sen Wu · Alexander Ratner · Jen Weng · Christopher Ré -
2019 Poster: Learning Nearest Neighbor Graphs from Noisy Distance Samples »
Blake Mason · Ardhendu Tripathy · Robert Nowak -
2019 Poster: MaxGap Bandit: Adaptive Algorithms for Approximate Ranking »
Sumeet Katariya · Ardhendu Tripathy · Robert Nowak -
2017 Workshop: Learning with Limited Labeled Data: Weak Supervision and Beyond »
Isabelle Augenstein · Stephen Bach · Eugene Belilovsky · Matthew Blaschko · Christoph Lampert · Edouard Oyallon · Emmanouil Antonios Platanios · Alexander Ratner · Christopher Ré -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: Scalable Generalized Linear Bandits: Online Computation and Hashing »
Kwang-Sung Jun · Aniruddha Bhargava · Robert Nowak · Rebecca Willett -
2017 Poster: Learning to Compose Domain-Specific Transformations for Data Augmentation »
Alexander Ratner · Henry Ehrenberg · Zeshan Hussain · Jared Dunnmon · Christopher Ré -
2017 Poster: A KL-LUCB algorithm for Large-Scale Crowdsourcing »
Ervin Tanczos · Robert Nowak · Bob Mankoff -
2017 Poster: Learning Low-Dimensional Metrics »
Blake Mason · Lalit Jain · Robert Nowak -
2016 Poster: Crowdsourced Clustering: Querying Edges vs Triangles »
Ramya Korlakai Vinayak · Babak Hassibi -
2016 Poster: Data Programming: Creating Large Training Sets, Quickly »
Alexander Ratner · Christopher M De Sa · Sen Wu · Daniel Selsam · Christopher Ré -
2014 Poster: Graph Clustering With Missing Data: Convex Algorithms and Analysis »
Ramya Korlakai Vinayak · Samet Oymak · Babak Hassibi