Timezone: »
Panel
Erin Grant · Richard Turner · Neil Houlsby · Priyanka Agrawal · Abhijeet Awasthi · Salomey Osei
Author Information
Erin Grant (University College London)
Richard Turner (University of Cambridge)
Neil Houlsby (Google)
Priyanka Agrawal (Google)
Abhijeet Awasthi (IIT Bombay)
Salomey Osei (University of Deusto)
Salomey is a research assistant at DeustoTech, University of Deusto. She is also a researcher at Masakhane and the research lead of unsupervised methods for Ghana NLP. She has been involved with a number of organizations such as Black in AI, Women in Machine Learning (WiML) and Women in Machine Learning and Data Science (WiMLDS) as a co-organiser. She is also passionate about mentoring students, especially females in STEM and her long term goal is to share her knowledge with others by lecturing.
More from the Same Authors
-
2021 : A Unified Few-Shot Classification Benchmark to Compare Transfer and Meta Learning Approaches »
Vincent Dumoulin · Neil Houlsby · Utku Evci · Xiaohua Zhai · Ross Goroshin · Sylvain Gelly · Hugo Larochelle -
2021 : Meta-learning inductive biases of learning systems with Gaussian processes »
Michael Li · Erin Grant · Tom Griffiths -
2021 : Curriculum Meta-Learning for Few-shot Classification »
Priyanka Agrawal -
2022 : Ice Core Dating using Probabilistic Programming »
Aditya Ravuri · Tom Andersson · Ieva Kazlauskaite · William Tebbutt · Richard Turner · Scott Hosking · Neil Lawrence · Markus Kaiser -
2022 : Active Learning with Convolutional Gaussian Neural Processes for Environmental Sensor Placement »
Tom Andersson · Wessel Bruinsma · Efstratios Markou · Daniel C. Jones · Scott Hosking · James Requeima · Anna Vaughan · Anna-Louise Ellis · Matthew Lazzara · Richard Turner -
2022 : Learning Cross-Database Transfer of Text-queries for Adapting Text-to-SQL Parsers »
Abhijeet Awasthi · Ashutosh Sathe · Sunita Sarawagi -
2022 : Contextual Squeeze-and-Excitation »
Massimiliano Patacchiola · John Bronskill · Aliaksandra Shysheya · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2022 : FiT: Parameter Efficient Few-shot Transfer Learning »
Aliaksandra Shysheya · John Bronskill · Massimiliano Patacchiola · Sebastian Nowozin · Richard Turner -
2022 : Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning Few-Shot Meta-Learners »
Elre Oldewage · John Bronskill · Richard Turner -
2022 : Attention as Interpretable Information Processing in Machine Learning Systems »
Erin Grant -
2022 Poster: UViM: A Unified Modeling Approach for Vision with Learned Guiding Codes »
Alexander Kolesnikov · André Susano Pinto · Lucas Beyer · Xiaohua Zhai · Jeremiah Harmsen · Neil Houlsby -
2022 Poster: Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification »
Massimiliano Patacchiola · John Bronskill · Aliaksandra Shysheya · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2022 Poster: Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts »
Basil Mustafa · Carlos Riquelme · Joan Puigcerver · Rodolphe Jenatton · Neil Houlsby -
2022 Affinity Workshop: Black in AI »
Victor Silva · Foutse Yuehgoh · Salomey Osei · Blessing Ogbuokiri · Idriss Cabrel Tsewalo Tondji · Deborah Dormah Kanubala · Lyse Wamba -
2021 Workshop: 5th Workshop on Meta-Learning »
Erin Grant · Fábio Ferreira · Frank Hutter · Jonathan Richard Schwarz · Joaquin Vanschoren · Huaxiu Yao -
2021 Affinity Workshop: WiML Workshop 4 »
Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva -
2021 Affinity Workshop: Black in AI Workshop »
Irene Nandutu · Hameed Abdul-Rashid · Foutse Yuehgoh · Mírian Silva · Salomey Osei · Victor Silva -
2021 Affinity Workshop: WiML Workshop 3 »
Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva -
2021 Oral: Passive attention in artificial neural networks predicts human visual selectivity »
Thomas Langlois · Haicheng Zhao · Erin Grant · Ishita Dasgupta · Tom Griffiths · Nori Jacoby -
2021 Affinity Workshop: WiML Workshop 2 »
Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva -
2021 Poster: How Tight Can PAC-Bayes be in the Small Data Regime? »
Andrew Foong · Wessel Bruinsma · David Burt · Richard Turner -
2021 Affinity Workshop: WiML Workshop 1 »
Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva -
2021 Poster: Collapsed Variational Bounds for Bayesian Neural Networks »
Marcin Tomczak · Siddharth Swaroop · Andrew Foong · Richard Turner -
2021 Poster: MLP-Mixer: An all-MLP Architecture for Vision »
Ilya Tolstikhin · Neil Houlsby · Alexander Kolesnikov · Lucas Beyer · Xiaohua Zhai · Thomas Unterthiner · Jessica Yung · Andreas Steiner · Daniel Keysers · Jakob Uszkoreit · Mario Lucic · Alexey Dosovitskiy -
2021 Poster: Scaling Vision with Sparse Mixture of Experts »
Carlos Riquelme · Joan Puigcerver · Basil Mustafa · Maxim Neumann · Rodolphe Jenatton · André Susano Pinto · Daniel Keysers · Neil Houlsby -
2021 Poster: Passive attention in artificial neural networks predicts human visual selectivity »
Thomas Langlois · Haicheng Zhao · Erin Grant · Ishita Dasgupta · Tom Griffiths · Nori Jacoby -
2021 Poster: Memory Efficient Meta-Learning with Large Images »
John Bronskill · Daniela Massiceti · Massimiliano Patacchiola · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2021 Poster: Revisiting the Calibration of Modern Neural Networks »
Matthias Minderer · Josip Djolonga · Rob Romijnders · Frances Hubis · Xiaohua Zhai · Neil Houlsby · Dustin Tran · Mario Lucic -
2020 : Introduction for invited speaker, Kate Rakelly »
Erin Grant -
2020 : Introduction for invited speaker, Fei-Fei Li »
Erin Grant -
2020 Workshop: Meta-Learning »
Jane Wang · Joaquin Vanschoren · Erin Grant · Jonathan Richard Schwarz · Francesco Visin · Jeff Clune · Roberto Calandra -
2020 Poster: Efficient Low Rank Gaussian Variational Inference for Neural Networks »
Marcin Tomczak · Siddharth Swaroop · Richard Turner -
2020 Poster: Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes »
Andrew Foong · Wessel Bruinsma · Jonathan Gordon · Yann Dubois · James Requeima · Richard Turner -
2020 Poster: On the Expressiveness of Approximate Inference in Bayesian Neural Networks »
Andrew Foong · David Burt · Yingzhen Li · Richard Turner -
2020 Poster: VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data »
Chao Ma · Sebastian Tschiatschek · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2020 Poster: Continual Deep Learning by Functional Regularisation of Memorable Past »
Pingbo Pan · Siddharth Swaroop · Alexander Immer · Runa Eschenhagen · Richard Turner · Mohammad Emtiyaz Khan -
2020 Oral: Continual Deep Learning by Functional Regularisation of Memorable Past »
Pingbo Pan · Siddharth Swaroop · Alexander Immer · Runa Eschenhagen · Richard Turner · Mohammad Emtiyaz Khan -
2020 : Opening remarks from the WiML 2020 Organizers »
Xinyi Chen · Erin Grant -
2020 Affinity Workshop: Women in Machine Learning »
Xinyi Chen · Erin Grant · Kristy Choi · Krystal Maughan · Xenia Miscouridou · Judy Hanwen Shen · Raquel Aoki · Belén Saldías · Mel Woghiren · Elizabeth Wood -
2020 Affinity Workshop: Black in AI »
Victor Silva · Flora Ponjou Tasse · Krystal Maughan · Eric Maigua · Charles Earl · Nwamaka (Amaka) Okafor · Ignatius Ezeani · Oloruntobiloba Olatunji · Foutse Yuehgoh · Salomey Osei · Ezinne Nwankwo · Joyce D. Williams -
2019 : Q&A from the Audience. Ask the Grad Students »
Erin Grant · Ruairidh Battleday · Sophia Sanborn · Nadine Chang · Nikhil Parthasarathy -
2019 : Taxonomic structure in learning from few positive examples »
Erin Grant -
2019 : Meta-learning as hierarchical modeling »
Erin Grant -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Spotlight: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Poster: Practical Deep Learning with Bayesian Principles »
Kazuki Osawa · Siddharth Swaroop · Mohammad Emtiyaz Khan · Anirudh Jain · Runa Eschenhagen · Richard Turner · Rio Yokota -
2018 Workshop: NIPS 2018 Workshop on Meta-Learning »
Joaquin Vanschoren · Frank Hutter · Sachin Ravi · Jane Wang · Erin Grant -
2018 Poster: Infinite-Horizon Gaussian Processes »
Arno Solin · James Hensman · Richard Turner -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2017 : POSTER: Concept acquisition through meta-learning »
Erin Grant -
2017 Poster: Streaming Sparse Gaussian Process Approximations »
Thang Bui · Cuong Nguyen · Richard Turner -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2016 Poster: Rényi Divergence Variational Inference »
Yingzhen Li · Richard Turner -
2015 Poster: Neural Adaptive Sequential Monte Carlo »
Shixiang (Shane) Gu · Zoubin Ghahramani · Richard Turner -
2015 Poster: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Poster: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2015 Spotlight: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Spotlight: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2014 Poster: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2014 Spotlight: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2011 Poster: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2011 Spotlight: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2009 Poster: Occlusive Components Analysis »
Jörg Lücke · Richard Turner · Maneesh Sahani · Marc Henniges -
2007 Workshop: Beyond Simple Cells: Probabilistic Models for Visual Cortical Processing »
Richard Turner · Pietro Berkes · Maneesh Sahani -
2007 Poster: Modeling Natural Sounds with Modulation Cascade Processes »
Richard Turner · Maneesh Sahani -
2007 Poster: On Sparsity and Overcompleteness in Image Models »
Pietro Berkes · Richard Turner · Maneesh Sahani