Timezone: »
Contributed Talks 3
Cristóbal Guzmán · Fangshuo Liao · Vishwak Srinivasan · Zhiyuan Li
Three (15 min) contributed talks in this session.
Fangshuo Liao, Strong Lottery Ticket Hypothesis with \epsilon–Perturbation
Vishwak Srinivasan, Sufficient conditions for non-asymptotic convergence of Riemannian optimization methods
Zhiyuan Li, How Does Sharpness-Aware Minimization Minimizes Sharpness?
Author Information
Cristóbal Guzmán (PUC-Chile)
Fangshuo Liao (Rice University)
Vishwak Srinivasan (Massachusetts Institute of Technology)
Zhiyuan Li (Stanford University)
More from the Same Authors
-
2022 : LOFT: Finding Lottery Tickets through Filter-wise Training »
Qihan Wang · Chen Dun · Fangshuo Liao · Christopher Jermaine · Anastasios Kyrillidis -
2022 : How Sharpness-Aware Minimization Minimizes Sharpness? »
Kaiyue Wen · Tengyu Ma · Zhiyuan Li -
2022 : How Sharpness-Aware Minimization Minimizes Sharpness? »
Kaiyue Wen · Tengyu Ma · Zhiyuan Li -
2022 : Strong Lottery Ticket Hypothesis with $\epsilon$–perturbation »
Fangshuo Liao · Zheyang Xiong · Anastasios Kyrillidis -
2022 : Strong Lottery Ticket Hypothesis with $\epsilon$–perturbation »
Fangshuo Liao · Zheyang Xiong · Anastasios Kyrillidis -
2022 : Sufficient conditions for non-asymptotic convergence of Riemannian optimization methods »
Vishwak Srinivasan · Ashia Wilson -
2022 : GIST: Distributed Training for Large-Scale Graph Convolutional Networks »
Cameron Wolfe · Jingkang Yang · Fangshuo Liao · Arindam Chowdhury · Chen Dun · Artun Bayer · Santiago Segarra · Anastasios Kyrillidis -
2022 : Sufficient Conditions for Non-asymptotic Convergence of Riemannian Optimization Methods »
Vishwak Srinivasan · Ashia Wilson -
2022 : Poster Session 2 »
Jinwuk Seok · Bo Liu · Ryotaro Mitsuboshi · David Martinez-Rubio · Weiqiang Zheng · Ilgee Hong · Chen Fan · Kazusato Oko · Bo Tang · Miao Cheng · Aaron Defazio · Tim G. J. Rudner · Gabriele Farina · Vishwak Srinivasan · Ruichen Jiang · Peng Wang · Jane Lee · Nathan Wycoff · Nikhil Ghosh · Yinbin Han · David Mueller · Liu Yang · Amrutha Varshini Ramesh · Siqi Zhang · Kaifeng Lyu · David Yunis · Kumar Kshitij Patel · Fangshuo Liao · Dmitrii Avdiukhin · Xiang Li · Sattar Vakili · Jiaxin Shi -
2022 Workshop: OPT 2022: Optimization for Machine Learning »
Courtney Paquette · Sebastian Stich · Quanquan Gu · Cristóbal Guzmán · John Duchi -
2022 Poster: Stochastic Halpern Iteration with Variance Reduction for Stochastic Monotone Inclusions »
Xufeng Cai · Chaobing Song · Cristóbal Guzmán · Jelena Diakonikolas -
2022 Poster: Differentially Private Generalized Linear Models Revisited »
Raman Arora · Raef Bassily · Cristóbal Guzmán · Michael Menart · Enayat Ullah -
2022 Poster: Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent »
Zhiyuan Li · Tianhao Wang · Jason Lee · Sanjeev Arora -
2022 Poster: Between Stochastic and Adversarial Online Convex Optimization: Improved Regret Bounds via Smoothness »
Sarah Sachs · Hedi Hadiji · Tim van Erven · Cristóbal Guzmán -
2022 Poster: Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction »
Kaifeng Lyu · Zhiyuan Li · Sanjeev Arora -
2022 Poster: Fast Mixing of Stochastic Gradient Descent with Normalization and Weight Decay »
Zhiyuan Li · Tianhao Wang · Dingli Yu -
2021 : Q&A with Cristóbal Guzmán »
Cristóbal Guzmán -
2021 : Non-Euclidean Differentially Private Stochastic Convex Optimization, Cristóbal Guzmán »
Cristóbal Guzmán -
2021 Poster: On the Validity of Modeling SGD with Stochastic Differential Equations (SDEs) »
Zhiyuan Li · Sadhika Malladi · Sanjeev Arora -
2021 Poster: Best-case lower bounds in online learning »
Cristóbal Guzmán · Nishant Mehta · Ali Mortazavi -
2021 Poster: Differentially Private Stochastic Optimization: New Results in Convex and Non-Convex Settings »
Raef Bassily · Cristóbal Guzmán · Michael Menart -
2021 Poster: Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias »
Kaifeng Lyu · Zhiyuan Li · Runzhe Wang · Sanjeev Arora -
2020 Poster: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Poster: Implicit Regularization and Convergence for Weight Normalization »
Xiaoxia Wu · Edgar Dobriban · Tongzheng Ren · Shanshan Wu · Zhiyuan Li · Suriya Gunasekar · Rachel Ward · Qiang Liu -
2020 Poster: Reconciling Modern Deep Learning with Traditional Optimization Analyses: The Intrinsic Learning Rate »
Zhiyuan Li · Kaifeng Lyu · Sanjeev Arora -
2020 Spotlight: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Poster: On Learning Ising Models under Huber's Contamination Model »
Adarsh Prasad · Vishwak Srinivasan · Sivaraman Balakrishnan · Pradeep Ravikumar -
2019 Poster: Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets »
Rohith Kuditipudi · Xiang Wang · Holden Lee · Yi Zhang · Zhiyuan Li · Wei Hu · Rong Ge · Sanjeev Arora -
2019 Poster: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang -
2019 Spotlight: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang -
2018 Poster: Online Improper Learning with an Approximation Oracle »
Elad Hazan · Wei Hu · Yuanzhi Li · Zhiyuan Li -
2016 Poster: Solving Marginal MAP Problems with NP Oracles and Parity Constraints »
Yexiang Xue · zhiyuan li · Stefano Ermon · Carla Gomes · Bart Selman -
2016 Poster: Learning in Games: Robustness of Fast Convergence »
Dylan Foster · zhiyuan li · Thodoris Lykouris · Karthik Sridharan · Eva Tardos