Timezone: »

 
Poster
MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control
Nolan Wagener · Andrey Kolobov · Felipe Vieira Frujeri · Ricky Loynd · Ching-An Cheng · Matthew Hausknecht

Wed Nov 30 02:00 PM -- 04:00 PM (PST) @ Hall J #1020

Simulated humanoids are an appealing research domain due to their physical capabilities. Nonetheless, they are also challenging to control, as a policy must drive an unstable, discontinuous, and high-dimensional physical system. One widely studied approach is to utilize motion capture (MoCap) data to teach the humanoid agent low-level skills (e.g., standing, walking, and running) that can then be re-used to synthesize high-level behaviors. However, even with MoCap data, controlling simulated humanoids remains very hard, as MoCap data offers only kinematic information. Finding physical control inputs to realize the demonstrated motions requires computationally intensive methods like reinforcement learning. Thus, despite the publicly available MoCap data, its utility has been limited to institutions with large-scale compute. In this work, we dramatically lower the barrier for productive research on this topic by training and releasing high-quality agents that can track over three hours of MoCap data for a simulated humanoid in the dmcontrol physics-based environment. We release MoCapAct (Motion Capture with Actions), a dataset of these expert agents and their rollouts, which contain proprioceptive observations and actions. We demonstrate the utility of MoCapAct by using it to train a single hierarchical policy capable of tracking the entire MoCap dataset within dmcontrol and show the learned low-level component can be re-used to efficiently learn downstream high-level tasks. Finally, we use MoCapAct to train an autoregressive GPT model and show that it can control a simulated humanoid to perform natural motion completion given a motion prompt.Videos of the results and links to the code and dataset are available at https://microsoft.github.io/MoCapAct.

Author Information

Nolan Wagener (Georgia Tech, Microsoft Research)
Nolan Wagener

Robotics PhD Candidate at Georgia Tech

Andrey Kolobov (Microsoft Research)
Felipe Vieira Frujeri (Microsoft Research)
Ricky Loynd (Microsoft Research)
Ching-An Cheng (Microsoft Research)
Matthew Hausknecht (Microsoft Research)

More from the Same Authors

  • 2022 : PACT: Perception-Action Causal Transformer for Autoregressive Robotics Pretraining »
    Rogerio Bonatti · Sai Vemprala · shuang ma · Felipe Vieira Frujeri · Shuhang Chen · Ashish Kapoor
  • 2022 : AMORE: A Model-based Framework for Improving Arbitrary Baseline Policies with Offline Data »
    Tengyang Xie · Mohak Bhardwaj · Nan Jiang · Ching-An Cheng
  • 2022 : Towards Data-Driven Offline Simulations for Online Reinforcement Learning »
    Shengpu Tang · Felipe Vieira Frujeri · Dipendra Misra · Alex Lamb · John Langford · Paul Mineiro · Sebastian Kochman
  • 2022 Poster: Uni[MASK]: Unified Inference in Sequential Decision Problems »
    Micah Carroll · Orr Paradise · Jessy Lin · Raluca Georgescu · Mingfei Sun · David Bignell · Stephanie Milani · Katja Hofmann · Matthew Hausknecht · Anca Dragan · Sam Devlin
  • 2021 Poster: Bellman-consistent Pessimism for Offline Reinforcement Learning »
    Tengyang Xie · Ching-An Cheng · Nan Jiang · Paul Mineiro · Alekh Agarwal
  • 2021 Poster: Heuristic-Guided Reinforcement Learning »
    Ching-An Cheng · Andrey Kolobov · Adith Swaminathan
  • 2021 Oral: Bellman-consistent Pessimism for Offline Reinforcement Learning »
    Tengyang Xie · Ching-An Cheng · Nan Jiang · Paul Mineiro · Alekh Agarwal
  • 2020 Poster: Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks »
    Amir Rahimi · Amirreza Shaban · Ching-An Cheng · Richard I Hartley · Byron Boots
  • 2020 Poster: Policy Improvement via Imitation of Multiple Oracles »
    Ching-An Cheng · Andrey Kolobov · Alekh Agarwal
  • 2020 Spotlight: Policy Improvement via Imitation of Multiple Oracles »
    Ching-An Cheng · Andrey Kolobov · Alekh Agarwal
  • 2020 Poster: Safe Reinforcement Learning via Curriculum Induction »
    Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal
  • 2020 Spotlight: Safe Reinforcement Learning via Curriculum Induction »
    Matteo Turchetta · Andrey Kolobov · Shital Shah · Andreas Krause · Alekh Agarwal
  • 2019 : Continuous Online Learning and New Insights to Online Imitation Learning »
    Jonathan Lee · Ching-An Cheng · Ken Goldberg · Byron Boots
  • 2019 : Poster Session »
    Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn
  • 2019 : Contributed Talks »
    Kevin Lu · Matthew Hausknecht · Ofir Nachum
  • 2019 : Poster and Coffee Break 1 »
    Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova
  • 2019 Poster: Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling »
    Andrey Kolobov · Yuval Peres · Cheng Lu · Eric Horvitz
  • 2018 Poster: Orthogonally Decoupled Variational Gaussian Processes »
    Hugh Salimbeni · Ching-An Cheng · Byron Boots · Marc Deisenroth
  • 2017 Poster: Variational Inference for Gaussian Process Models with Linear Complexity »
    Ching-An Cheng · Byron Boots
  • 2016 Poster: Incremental Variational Sparse Gaussian Process Regression »
    Ching-An Cheng · Byron Boots