Timezone: »
There has been significant progress in developing reinforcement learning (RL) training systems. Past works such as IMPALA, Apex, Seed RL, Sample Factory, and others, aim to improve the system's overall throughput. In this paper, we aim to address a common bottleneck in the RL training system, i.e., parallel environment execution, which is often the slowest part of the whole system but receives little attention. With a curated design for paralleling RL environments, we have improved the RL environment simulation speed across different hardware setups, ranging from a laptop and a modest workstation, to a high-end machine such as NVIDIA DGX-A100. On a high-end machine, EnvPool achieves one million frames per second for the environment execution on Atari environments and three million frames per second on MuJoCo environments. When running EnvPool on a laptop, the speed is 2.8x that of the Python subprocess. Moreover, great compatibility with existing RL training libraries has been demonstrated in the open-sourced community, including CleanRL, rl_games, DeepMind Acme, etc. Finally, EnvPool allows researchers to iterate their ideas at a much faster pace and has great potential to become the de facto RL environment execution engine. Example runs show that it only takes five minutes to train agents to play Atari Pong and MuJoCo Ant on a laptop. EnvPool is open-sourced at https://github.com/sail-sg/envpool.
Author Information
Jiayi Weng (OpenAI)
github.com/Trinkle23897 Creater of Tianshou and EnvPool, now working at OpenAI
Min Lin (Sea AI Lab)
Shengyi Huang (Drexel University)
Bo Liu (Peking University)
Denys Makoviichuk (Snap Inc)
Viktor Makoviychuk (NVIDIA)
Zichen Liu (national university of singaore, National University of Singapore)
Yufan Song (School of Computer Science, Carnegie Mellon University)
Ting Luo (CMU, Carnegie Mellon University)
Yukun Jiang (School of Computer Science, Carnegie Mellon University)
Zhongwen Xu (Sea AI Lab)
Shuicheng Yan (Sea AI Lab)
More from the Same Authors
-
2021 : Isaac Gym: High Performance GPU Based Physics Simulation For Robot Learning »
Viktor Makoviychuk · Lukasz Wawrzyniak · Yunrong Guo · Michelle Lu · Kier Storey · Miles Macklin · David Hoeller · Nikita Rudin · Arthur Allshire · Ankur Handa · Gavriel State -
2021 : Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World Trifinger »
Arthur Allshire · Mayank Mittal · Varun Lodaya · Viktor Makoviychuk · Denys Makoviichuk · Felix Widmaier · Manuel Wuethrich · Stefan Bauer · Ankur Handa · Animesh Garg -
2022 Poster: Inception Transformer »
Chenyang Si · Weihao Yu · Pan Zhou · Yichen Zhou · Xinchao Wang · Shuicheng Yan -
2022 : Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models »
Xingyu Xie · Pan Zhou · Huan Li · Zhouchen Lin · Shuicheng Yan -
2022 : Win: Weight-Decay-Integrated Nesterov Acceleration for Adaptive Gradient Algorithms »
Pan Zhou · Xingyu Xie · Shuicheng Yan -
2022 : TorchOpt: An Efficient library for Differentiable Optimization »
Jie Ren · Xidong Feng · Bo Liu · Xuehai Pan · Yao Fu · Luo Mai · Yaodong Yang -
2022 : Boosting Offline Reinforcement Learning via Data Resampling »
Yang Yue · Bingyi Kang · Xiao Ma · Zhongwen Xu · Gao Huang · Shuicheng Yan -
2022 : Mutual Information Regularized Offline Reinforcement Learning »
Xiao Ma · Bingyi Kang · Zhongwen Xu · Min Lin · Shuicheng Yan -
2022 : HloEnv: A Graph Rewrite Environment for Deep Learning Compiler Optimization Research »
Chin Yang Oh · Kunhao Zheng · Bingyi Kang · Xinyi Wan · Zhongwen Xu · Shuicheng Yan · Min Lin · Yangzihao Wang -
2022 : Efficient Offline Policy Optimization with a Learned Model »
Zichen Liu · Siyi Li · Wee Sun Lee · Shuicheng Yan · Zhongwen Xu -
2022 : Visual Imitation Learning with Patch Rewards »
Minghuan Liu · Tairan He · Weinan Zhang · Shuicheng Yan · Zhongwen Xu -
2022 Spotlight: Inception Transformer »
Chenyang Si · Weihao Yu · Pan Zhou · Yichen Zhou · Xinchao Wang · Shuicheng Yan -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: A Theoretical Understanding of Gradient Bias in Meta-Reinforcement Learning »
Bo Liu · Xidong Feng · Jie Ren · Luo Mai · Rui Zhu · Haifeng Zhang · Jun Wang · Yaodong Yang -
2021 Poster: How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness? »
Xinshuai Dong · Anh Tuan Luu · Min Lin · Shuicheng Yan · Hanwang Zhang -
2021 Poster: Discovery of Options via Meta-Learned Subgoals »
Vivek Veeriah · Tom Zahavy · Matteo Hessel · Zhongwen Xu · Junhyuk Oh · Iurii Kemaev · Hado van Hasselt · David Silver · Satinder Singh -
2021 Poster: Neural Auto-Curricula in Two-Player Zero-Sum Games »
Xidong Feng · Oliver Slumbers · Ziyu Wan · Bo Liu · Stephen McAleer · Ying Wen · Jun Wang · Yaodong Yang -
2020 Poster: Discovering Reinforcement Learning Algorithms »
Junhyuk Oh · Matteo Hessel · Wojciech Czarnecki · Zhongwen Xu · Hado van Hasselt · Satinder Singh · David Silver -
2020 Poster: Meta-Gradient Reinforcement Learning with an Objective Discovered Online »
Zhongwen Xu · Hado van Hasselt · Matteo Hessel · Junhyuk Oh · Satinder Singh · David Silver -
2020 Poster: Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning »
Massimo Caccia · Pau Rodriguez · Oleksiy Ostapenko · Fabrice Normandin · Min Lin · Lucas Page-Caccia · Issam Hadj Laradji · Irina Rish · Alexandre Lacoste · David Vázquez · Laurent Charlin -
2020 Poster: A Self-Tuning Actor-Critic Algorithm »
Tom Zahavy · Zhongwen Xu · Vivek Veeriah · Matteo Hessel · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2019 : The Animal-AI Olympics »
Denys Makoviichuk · Matthew Crosby · Benjamin Beyret · Jan Feyereisl · Hiroshi Yamakawa -
2019 : Environments and Data Sets »
Karl Cobbe · Gianni De Fabritiis · Denys Makoviichuk -
2019 Poster: Online Continual Learning with Maximal Interfered Retrieval »
Rahaf Aljundi · Eugene Belilovsky · Tinne Tuytelaars · Laurent Charlin · Massimo Caccia · Min Lin · Lucas Page-Caccia -
2019 Poster: Discovery of Useful Questions as Auxiliary Tasks »
Vivek Veeriah · Matteo Hessel · Zhongwen Xu · Janarthanan Rajendran · Richard L Lewis · Junhyuk Oh · Hado van Hasselt · David Silver · Satinder Singh -
2019 Poster: Gradient based sample selection for online continual learning »
Rahaf Aljundi · Min Lin · Baptiste Goujaud · Yoshua Bengio -
2018 Poster: Meta-Gradient Reinforcement Learning »
Zhongwen Xu · Hado van Hasselt · David Silver -
2017 Poster: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul -
2017 Spotlight: Natural Value Approximators: Learning when to Trust Past Estimates »
Zhongwen Xu · Joseph Modayil · Hado van Hasselt · Andre Barreto · David Silver · Tom Schaul