Timezone: »
Poster
Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification
Ihsan Ullah · Dustin Carrión-Ojeda · Sergio Escalera · Isabelle Guyon · Mike Huisman · Felix Mohr · Jan N. van Rijn · Haozhe Sun · Joaquin Vanschoren · Phan Anh Vu
We introduce Meta-Album, an image classification meta-dataset designed to facilitate few-shot learning, transfer learning, meta-learning, among other tasks. It includes 40 open datasets, each having at least 20 classes with 40 examples per class, with verified licences. They stem from diverse domains, such as ecology (fauna and flora), manufacturing (textures, vehicles), human actions, and optical character recognition, featuring various image scales (microscopic, human scales, remote sensing). All datasets are preprocessed, annotated, and formatted uniformly, and come in 3 versions (Micro $\subset$ Mini $\subset$ Extended) to match users’ computational resources. We showcase the utility of the first 30 datasets on few-shot learning problems. The other 10 will be released shortly after. Meta-Album is already more diverse and larger (in number of datasets) than similar efforts, and we are committed to keep enlarging it via a series of competitions. As competitions terminate, their test data are released, thus creating a rolling benchmark, available through OpenML.org. Our website https://meta-album.github.io/ contains the source code of challenge winning methods, baseline methods, data loaders, and instructions for contributing either new datasets or algorithms to our expandable meta-dataset.
Author Information
Ihsan Ullah (Université Paris Saclay)
Dustin Carrión-Ojeda (TU Darmstadt)
Sergio Escalera (Computer Vision Center and University of Barcelona)
Isabelle Guyon (Google and ChaLearn)
Mike Huisman (Leiden University)
Felix Mohr (Universidad de La Sabana)
Jan N. van Rijn (Leiden University)
Haozhe Sun (Université Paris-Saclay)
Joaquin Vanschoren (Eindhoven University of Technology)
Phan Anh Vu (Université Paris Saclay)
More from the Same Authors
-
2021 : A Preliminary Study on the Feature Representations of Transfer Learning and Gradient-Based Meta-Learning Techniques »
Mike Huisman · Jan van Rijn · Aske Plaat -
2022 : Fifteen-minute Competition Overview Video »
Dustin Carrión-Ojeda · Ihsan Ullah · Sergio Escalera · Isabelle Guyon · Felix Mohr · Manh Hung Nguyen · Joaquin Vanschoren -
2022 : LOTUS: Learning to learn with Optimal Transport in Unsupervised Scenarios »
prabhant singh · Joaquin Vanschoren -
2023 Poster: DataPerf: Benchmarks for Data-Centric AI Development »
Mark Mazumder · Colby Banbury · Xiaozhe Yao · Bojan Karlaš · William Gaviria Rojas · Sudnya Diamos · Greg Diamos · Lynn He · Alicia Parrish · Hannah Rose Kirk · Jessica Quaye · Charvi Rastogi · Douwe Kiela · David Jurado · David Kanter · Rafael Mosquera · Will Cukierski · Juan Ciro · Lora Aroyo · Bilge Acun · Lingjiao Chen · Mehul Raje · Max Bartolo · Evan Sabri Eyuboglu · Amirata Ghorbani · Emmett Goodman · Addison Howard · Oana Inel · Tariq Kane · Christine R. Kirkpatrick · D. Sculley · Tzu-Sheng Kuo · Jonas Mueller · Tristan Thrush · Joaquin Vanschoren · Margaret Warren · Adina Williams · Serena Yeung · Newsha Ardalani · Praveen Paritosh · Ce Zhang · James Zou · Carole-Jean Wu · Cody Coleman · Andrew Ng · Peter Mattson · Vijay Janapa Reddi -
2022 : Closing remarks and new challenge announcements »
Dustin Carrión-Ojeda -
2022 : Baselines explanation and competition results »
Dustin Carrión-Ojeda -
2022 : Winners announcement »
Dustin Carrión-Ojeda -
2022 Competition: Cross-Domain MetaDL: Any-Way Any-Shot Learning Competition with Novel Datasets from Practical Domains »
Dustin Carrión-Ojeda · Ihsan Ullah · Sergio Escalera · Isabelle Guyon · Felix Mohr · Manh Hung Nguyen · Joaquin Vanschoren -
2022 : Competition introduction »
Dustin Carrión-Ojeda -
2022 Workshop: NeurIPS 2022 Workshop on Meta-Learning »
Huaxiu Yao · Eleni Triantafillou · Fabio Ferreira · Joaquin Vanschoren · Qi Lei -
2021 Workshop: 5th Workshop on Meta-Learning »
Erin Grant · Fábio Ferreira · Frank Hutter · Jonathan Richard Schwarz · Joaquin Vanschoren · Huaxiu Yao -
2021 Panel: The Role of Benchmarks in the Scientific Progress of Machine Learning »
Lora Aroyo · Samuel Bowman · Isabelle Guyon · Joaquin Vanschoren -
2021 : MetaDL: Few Shot Learning Competition with Novel Datasets from Practical Domains + Q&A »
Adrian El Baz · Isabelle Guyon · Zhengying Liu · Jan N. Van Rijn · Haozhe Sun · Sébastien Treguer · Wei-Wei Tu · Ihsan Ullah · Joaquin Vanschoren · Phan Ahn Vu -
2016 Workshop: Machine Learning for Spatiotemporal Forecasting »
Florin Popescu · Sergio Escalera · Xavier Baró · Stephane Ayache · Isabelle Guyon -
2016 Workshop: Challenges in Machine Learning: Gaming and Education »
Isabelle Guyon · Evelyne Viegas · Balázs Kégl · Ben Hamner · Sergio Escalera