Timezone: »
Proximal Policy Optimization (PPO) is a ubiquitous on-policy reinforcement learning algorithm but is significantly less utilized than off-policy learning algorithms in multi-agent settings. This is often due to the belief that PPO is significantly less sample efficient than off-policy methods in multi-agent systems. In this work, we carefully study the performance of PPO in cooperative multi-agent settings. We show that PPO-based multi-agent algorithms achieve surprisingly strong performance in four popular multi-agent testbeds: the particle-world environments, the StarCraft multi-agent challenge, the Hanabi challenge, and Google Research Football, with minimal hyperparameter tuning and without any domain-specific algorithmic modifications or architectures. Importantly, compared to competitive off-policy methods, PPO often achieves competitive or superior results in both final returns and sample efficiency. Finally, through ablation studies, we analyze implementation and hyperparameter factors that are critical to PPO's empirical performance, and give concrete practical suggestions regarding these factors. Our results show that when using these practices, simple PPO-based methods are a strong baseline in cooperative multi-agent reinforcement learning. Source code is released at https://github.com/marlbenchmark/on-policy.
Author Information
Chao Yu (Tsinghua University)
Akash Velu (Stanford University)
Eugene Vinitsky (UC Berkeley)
Jiaxuan Gao (Tsinghua University, Tsinghua University)
Yu Wang (Tsinghua University)
Yu Wang received his B.S. degree in 2002 and Ph.D. degree (with honor) in 2007 from Tsinghua University, Beijing. He is currently a Tenured Associate Professor with the Department of Electronic Engineering, Tsinghua University. His research interests include brain inspired computing, application specific hardware computing, parallel circuit analysis, and power/reliability aware system design methodology. Dr. Wang has authored and coauthored over 150 papers in refereed journals and conferences. He has received Best Paper Award in FPGA 2017, ISVLSI 2012, and Best Poster Award in HEART 2012 with 8 Best Paper Nominations. He is a recipient of IBM X10 Faculty Award in 2010. He served as TPC chair for ICFPT 2011 and Finance Chair of ISLPED 2012-2016, and served as program committee member for leading conferences in these areas, including top EDA conferences such as DAC, DATE, ICCAD, ASP-DAC, and top FPGA conferences such as FPGA and FPT. Currently he serves as Co-EIC for SIGDA E-Newsletter, Associate Editor for IEEE Transactions on CAD and Journal of Circuits, Systems, and Computers. He also serves as guest editor for Integration, the VLSI Journal and IEEE Transactions on Multi-Scale Computing Systems. He is a recipient of NSFC Excellent Young Scholar,and is now serving as ACM distinguished speaker. He is an IEEE/ACM senior member.
Alexandre Bayen (University of California Berkeley)
YI WU (UC Berkeley)
More from the Same Authors
-
2021 : Learning Design and Construction with Varying-Sized Materials via Prioritized Memory Resets »
Yunfei Li · Lei Li · YI WU -
2021 : Learning Efficient Multi-Agent Cooperative Visual Exploration »
Chao Yu · Jiaxuan Gao · Huazhong Yang · Yu Wang · Yi Wu -
2022 Poster: Grounded Reinforcement Learning: Learning to Win the Game under Human Commands »
Shusheng Xu · Huaijie Wang · YI WU -
2022 Poster: Pre-Trained Image Encoder for Generalizable Visual Reinforcement Learning »
Zhecheng Yuan · Zhengrong Xue · Bo Yuan · Xueqian Wang · YI WU · Yang Gao · Huazhe Xu -
2022 : Understanding Curriculum Learning in Policy Optimization for Online Combinatorial Optimization »
Runlong Zhou · Yuandong Tian · YI WU · Simon Du -
2023 Poster: Iteratively Learn Diverse Strategies with State Distance Information »
Wei Fu · Weihua Du · Jingwei Li · Sunli Chen · Jingzhao Zhang · YI WU -
2022 Spotlight: Lightning Talks 5A-3 »
Minting Pan · Xiang Chen · Wenhan Huang · Can Chang · Zhecheng Yuan · Jianzhun Shao · Yushi Cao · Peihao Chen · Ke Xue · Zhengrong Xue · Zhiqiang Lou · Xiangming Zhu · Lei Li · Zhiming Li · Kai Li · Jiacheng Xu · Dongyu Ji · Ni Mu · Kun Shao · Tianpei Yang · Kunyang Lin · Ningyu Zhang · Yunbo Wang · Lei Yuan · Bo Yuan · Hongchang Zhang · Jiajun Wu · Tianze Zhou · Xueqian Wang · Ling Pan · Yuhang Jiang · Xiaokang Yang · Xiaozhuan Liang · Hao Zhang · Weiwen Hu · Miqing Li · YAN ZHENG · Matthew Taylor · Huazhe Xu · Shumin Deng · Chao Qian · YI WU · Shuncheng He · Wenbing Huang · Chuanqi Tan · Zongzhang Zhang · Yang Gao · Jun Luo · Yi Li · Xiangyang Ji · Thomas Li · Mingkui Tan · Fei Huang · Yang Yu · Huazhe Xu · Dongge Wang · Jianye Hao · Chuang Gan · Yang Liu · Luo Si · Hangyu Mao · Huajun Chen · Jianye Hao · Jun Wang · Xiaotie Deng -
2022 Spotlight: Pre-Trained Image Encoder for Generalizable Visual Reinforcement Learning »
Zhecheng Yuan · Zhengrong Xue · Bo Yuan · Xueqian Wang · YI WU · Yang Gao · Huazhe Xu -
2022 Spotlight: TA-GATES: An Encoding Scheme for Neural Network Architectures »
Xuefei Ning · Zixuan Zhou · Junbo Zhao · Tianchen Zhao · Yiping Deng · Changcheng Tang · Shuang Liang · Huazhong Yang · Yu Wang -
2022 Spotlight: Lightning Talks 4B-1 »
Alexandra Senderovich · Zhijie Deng · Navid Ansari · Xuefei Ning · Yasmin Salehi · Xiang Huang · Chenyang Wu · Kelsey Allen · Jiaqi Han · Nikita Balagansky · Tatiana Lopez-Guevara · Tianci Li · Zhanhong Ye · Zixuan Zhou · Feng Zhou · Ekaterina Bulatova · Daniil Gavrilov · Wenbing Huang · Dennis Giannacopoulos · Hans-peter Seidel · Anton Obukhov · Kimberly Stachenfeld · Hongsheng Liu · Jun Zhu · Junbo Zhao · Hengbo Ma · Nima Vahidi Ferdowsi · Zongzhang Zhang · Vahid Babaei · Jiachen Li · Alvaro Sanchez Gonzalez · Yang Yu · Shi Ji · Maxim Rakhuba · Tianchen Zhao · Yiping Deng · Peter Battaglia · Josh Tenenbaum · Zidong Wang · Chuang Gan · Changcheng Tang · Jessica Hamrick · Kang Yang · Tobias Pfaff · Yang Li · Shuang Liang · Min Wang · Huazhong Yang · Haotian CHU · Yu Wang · Fan Yu · Bei Hua · Lei Chen · Bin Dong -
2022 Poster: Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world »
Eugene Vinitsky · Nathan Lichtlé · Xiaomeng Yang · Brandon Amos · Jakob Foerster -
2022 Poster: TA-GATES: An Encoding Scheme for Neural Network Architectures »
Xuefei Ning · Zixuan Zhou · Junbo Zhao · Tianchen Zhao · Yiping Deng · Changcheng Tang · Shuang Liang · Huazhong Yang · Yu Wang -
2021 Poster: Variational Automatic Curriculum Learning for Sparse-Reward Cooperative Multi-Agent Problems »
Jiayu Chen · Yuanxin Zhang · Yuanfan Xu · Huimin Ma · Huazhong Yang · Jiaming Song · Yu Wang · Yi Wu -
2021 Poster: Evaluating Efficient Performance Estimators of Neural Architectures »
Xuefei Ning · Changcheng Tang · Wenshuo Li · Zixuan Zhou · Shuang Liang · Huazhong Yang · Yu Wang -
2020 Poster: Multi-Task Reinforcement Learning with Soft Modularization »
Ruihan Yang · Huazhe Xu · YI WU · Xiaolong Wang -
2018 : Adversarial Vision Challenge: Towards More Effective Black-Box Adversarial Training »
Xuefei Ning · Wenshuo Li · Yu Wang -
2018 Poster: Meta-Learning MCMC Proposals »
Tongzhou Wang · YI WU · Dave Moore · Stuart Russell -
2017 Poster: Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments »
Ryan Lowe · YI WU · Aviv Tamar · Jean Harb · OpenAI Pieter Abbeel · Igor Mordatch -
2016 Poster: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Oral: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden