Timezone: »

 
Poster
NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks
Renbo Tu · Nicholas Roberts · Misha Khodak · Junhong Shen · Frederic Sala · Ameet Talwalkar

Tue Nov 29 09:00 AM -- 11:00 AM (PST) @ Hall J #1029

Most existing neural architecture search (NAS) benchmarks and algorithms prioritize well-studied tasks, e.g. image classification on CIFAR or ImageNet. This makes the performance of NAS approaches in more diverse areas poorly understood. In this paper, we present NAS-Bench-360, a benchmark suite to evaluate methods on domains beyond those traditionally studied in architecture search, and use it to address the following question: do state-of-the-art NAS methods perform well on diverse tasks? To construct the benchmark, we curate ten tasks spanning a diverse array of application domains, dataset sizes, problem dimensionalities, and learning objectives. Each task is carefully chosen to interoperate with modern CNN-based search methods while possibly being far-afield from its original development domain. To speed up and reduce the cost of NAS research, for two of the tasks we release the precomputed performance of 15,625 architectures comprising a standard CNN search space. Experimentally, we show the need for more robust NAS evaluation of the kind NAS-Bench-360 enables by showing that several modern NAS procedures perform inconsistently across the ten tasks, with many catastrophically poor results. We also demonstrate how NAS-Bench-360 and its associated precomputed results will enable future scientific discoveries by testing whether several recent hypotheses promoted in the NAS literature hold on diverse tasks. NAS-Bench-360 is hosted at https://nb360.ml.cmu.edu.

Author Information

Renbo Tu (University of Toronto)
Nicholas Roberts (University of Wisconsin-Madison)

I am a Ph.D. student in CS at University of Wisconsin – Madison where I am advised by Fred Sala. Before that, I had the pleasure of working with Ameet Talwalkar and Zack Lipton during my MS at Carnegie Mellon University. As an undergraduate, I was extremely fortunate to work with both Sanjoy Dasgupta and Gary Cottrell at the University of California, San Diego. Before that, I was a community college student at Fresno City College, where I was lucky enough to learn calculus, linear algebra, AND C++ from Greg Jamison.

Misha Khodak (CMU)
Junhong Shen (Carnegie Mellon University)
Frederic Sala (University of Wisconsin, Madison)
Ameet Talwalkar (CMU)

More from the Same Authors

  • 2021 : Simulated User Studies for Explanation Evaluation »
    Valerie Chen · Gregory Plumb · Nicholay Topin · Ameet S Talwalkar
  • 2021 : Bayesian Persuasion for Algorithmic Recourse »
    Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu
  • 2021 : Bayesian Persuasion for Algorithmic Recourse »
    Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu
  • 2021 : Bayesian Persuasion for Algorithmic Recourse »
    Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu
  • 2022 : Anomaly Detection with Multiple Reference Datasets in High Energy Physics »
    Mayee Chen · Benjamin Nachman · Frederic Sala
  • 2022 : AutoML for Climate Change: A Call to Action »
    Renbo Tu · Nicholas Roberts · Vishak Prasad C · Sibasis Nayak · Paarth Jain · Frederic Sala · Ganesh Ramakrishnan · Ameet Talwalkar · Willie Neiswanger · Colin White
  • 2022 : Domain Generalization with Nuclear Norm Regularization »
    Zhenmei Shi · Yifei Ming · Ying Fan · Frederic Sala · Yingyu Liang
  • 2022 : Fifteen-minute Competition Overview Video »
    Anderson Schneider · Junhong Shen · Yuriy Nevmyvaka · Samuel Guo · Nicholas Roberts · Misha Khodak · Frederic Sala · Evan Sparks · Cong Xu · Ameet Talwalkar
  • 2022 Competition: AutoML Decathlon: Diverse Tasks, Modern Methods, and Efficiency at Scale »
    Samuel Guo · Cong Xu · Nicholas Roberts · Misha Khodak · Junhong Shen · Evan Sparks · Ameet Talwalkar · Yuriy Nevmyvaka · Frederic Sala · Anderson Schneider
  • 2022 : Q & A »
    Frederic Sala · Ramya Korlakai Vinayak
  • 2022 Tutorial: Theory and Practice of Efficient and Accurate Dataset Construction »
    Frederic Sala · Ramya Korlakai Vinayak
  • 2022 : Tutorial part 1 »
    Frederic Sala · Ramya Korlakai Vinayak
  • 2022 Poster: Use-Case-Grounded Simulations for Explanation Evaluation »
    Valerie Chen · Nari Johnson · Nicholay Topin · Gregory Plumb · Ameet Talwalkar
  • 2022 Poster: AutoWS-Bench-101: Benchmarking Automated Weak Supervision with 100 Labels »
    Nicholas Roberts · Xintong Li · Tzu-Heng Huang · Dyah Adila · Spencer Schoenberg · Cheng-Yu Liu · Lauren Pick · Haotian Ma · Aws Albarghouthi · Frederic Sala
  • 2022 Poster: Provably tuning the ElasticNet across instances »
    Maria-Florina Balcan · Misha Khodak · Dravyansh Sharma · Ameet Talwalkar
  • 2022 Poster: Lifting Weak Supervision To Structured Prediction »
    Harit Vishwakarma · Frederic Sala
  • 2022 Poster: NAS-Bench-Suite-Zero: Accelerating Research on Zero Cost Proxies »
    Arjun Krishnakumar · Colin White · Arber Zela · Renbo Tu · Mahmoud Safari · Frank Hutter
  • 2022 Poster: Learning Predictions for Algorithms with Predictions »
    Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar · Sergei Vassilvitskii
  • 2022 Poster: Efficient Architecture Search for Diverse Tasks »
    Junhong Shen · Misha Khodak · Ameet Talwalkar
  • 2022 Poster: Bayesian Persuasion for Algorithmic Recourse »
    Keegan Harris · Valerie Chen · Joon Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu
  • 2021 : [S9] Simulated User Studies for Explanation Evaluation »
    Valerie Chen · Gregory Plumb · Nicholay Topin · Ameet S Talwalkar
  • 2021 : Bayesian Persuasion for Algorithmic Recourse »
    Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu
  • 2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
    Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar
  • 2021 Poster: Rethinking Neural Operations for Diverse Tasks »
    Nicholas Roberts · Mikhail Khodak · Tri Dao · Liam Li · Christopher Ré · Ameet Talwalkar
  • 2021 Poster: Learning-to-learn non-convex piecewise-Lipschitz functions »
    Maria-Florina Balcan · Mikhail Khodak · Dravyansh Sharma · Ameet Talwalkar
  • 2020 Workshop: International Workshop on Scalability, Privacy, and Security in Federated Learning (SpicyFL 2020) »
    Xiaolin Andy Li · Dejing Dou · Ameet Talwalkar · Hongyu Li · Jianzong Wang · Yanzhi Wang
  • 2020 Poster: Regularizing Black-box Models for Improved Interpretability »
    Gregory Plumb · Maruan Al-Shedivat · Ángel Alexander Cabrera · Adam Perer · Eric Xing · Ameet Talwalkar
  • 2019 : Poster Session »
    Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar
  • 2019 : Break / Poster Session 1 »
    Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang
  • 2019 : Poster Session »
    Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis
  • 2019 : Poster session »
    Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak
  • 2019 : TBD »
    Ameet Talwalkar
  • 2019 Poster: Adaptive Gradient-Based Meta-Learning Methods »
    Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar
  • 2018 Poster: Learning from discriminative feature feedback »
    Sanjoy Dasgupta · Sivan Sabato · Nicholas Roberts · Akansha Dey
  • 2018 Poster: Model Agnostic Supervised Local Explanations »
    Gregory Plumb · Denali Molitor · Ameet Talwalkar
  • 2017 Poster: Variable Importance Using Decision Trees »
    Jalil Kazemitabar · Arash Amini · Adam Bloniarz · Ameet S Talwalkar
  • 2017 Poster: Federated Multi-Task Learning »
    Virginia Smith · Chao-Kai Chiang · Maziar Sanjabi · Ameet S Talwalkar
  • 2016 : Invited Talk: Paleo: A Performance Model for Deep Neural Networks (Ameet Talwalkar, UCLA) »
    Ameet S Talwalkar
  • 2016 Poster: Yggdrasil: An Optimized System for Training Deep Decision Trees at Scale »
    Firas Abuzaid · Joseph K Bradley · Feynman Liang · Andrew Feng · Lee Yang · Matei Zaharia · Ameet S Talwalkar
  • 2014 Workshop: Distributed Machine Learning and Matrix Computations »
    Reza Zadeh · Ion Stoica · Ameet S Talwalkar
  • 2011 Workshop: Sparse Representation and Low-rank Approximation »
    Ameet S Talwalkar · Lester W Mackey · Mehryar Mohri · Michael W Mahoney · Francis Bach · Mike Davies · Remi Gribonval · Guillaume R Obozinski
  • 2011 Poster: Divide-and-Conquer Matrix Factorization »
    Lester W Mackey · Ameet S Talwalkar · Michael Jordan
  • 2010 Workshop: Low-rank Methods for Large-scale Machine Learning »
    Arthur Gretton · Michael W Mahoney · Mehryar Mohri · Ameet S Talwalkar
  • 2009 Poster: Ensemble Nystrom Method »
    Sanjiv Kumar · Mehryar Mohri · Ameet S Talwalkar