Timezone: »
Artificial lights commonly leave strong lens flare artifacts on images captured at night. Nighttime flare not only affects the visual quality but also degrades the performance of vision algorithms. Existing flare removal methods mainly focus on removing daytime flares and fail in nighttime. Nighttime flare removal is challenging because of the unique luminance and spectrum of artificial lights and the diverse patterns and image degradation of the flares captured at night. The scarcity of nighttime flare removal datasets limits the research on this crucial task. In this paper, we introduce, Flare7K, the first nighttime flare removal dataset, which is generated based on the observation and statistics of real-world nighttime lens flares. It offers 5,000 scattering and 2,000 reflective flare images, consisting of 25 types of scattering flares and 10 types of reflective flares. The 7,000 flare patterns can be randomly added to flare-free images, forming the flare-corrupted and flare-free image pairs. With the paired data, we can train deep models to restore flare-corrupted images taken in the real world effectively. Apart from abundant flare patterns, we also provide rich annotations, including the labeling of light source, glare with shimmer, reflective flare, and streak, which are commonly absent from existing datasets. Hence, our dataset can facilitate new work in nighttime flare removal and more fine-grained analysis of flare patterns. Extensive experiments show that our dataset adds diversity to existing flare datasets and pushes the frontier of nighttime flare removal.
Author Information
Yuekun Dai (Nanyang Technological University)
Chongyi Li ( Nanyang Technological University)
Shangchen Zhou (Nanyang Technological University)
Ruicheng Feng (Nanyang Technological University)
Chen Change Loy (Nanyang Technological University)
More from the Same Authors
-
2022 Spotlight: Deep Fourier Up-Sampling »
man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Deep Fourier Up-Sampling »
man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li -
2022 Poster: Towards Robust Blind Face Restoration with Codebook Lookup Transformer »
Shangchen Zhou · Kelvin Chan · Chongyi Li · Chen Change Loy -
2022 Poster: AnimeRun: 2D Animation Visual Correspondence from Open Source 3D Movies »
Li Siyao · Yuhang Li · Bo Li · Chao Dong · Ziwei Liu · Chen Change Loy -
2020 Poster: Cross-Scale Internal Graph Neural Network for Image Super-Resolution »
Shangchen Zhou · Jiawei Zhang · Wangmeng Zuo · Chen Change Loy -
2020 Poster: CoADNet: Collaborative Aggregation-and-Distribution Networks for Co-Salient Object Detection »
Qijian Zhang · Runmin Cong · Junhui Hou · Chongyi Li · Yao Zhao -
2018 Poster: Non-Local Recurrent Network for Image Restoration »
Ding Liu · Bihan Wen · Yuchen Fan · Chen Change Loy · Thomas Huang