Timezone: »
Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease.
Author Information
Peter Belcak (ETHZ - ETH Zurich)
Ard Kastrati (ETH Zurich)
Flavio Schenker (ETH Zurich)
Roger Wattenhofer (ETH Zurich)
More from the Same Authors
-
2021 : EEGEyeNet: a Simultaneous Electroencephalography and Eye-tracking Dataset and Benchmark for Eye Movement Prediction »
Ard Kastrati · Martyna Plomecka · Damian Pascual Ortiz · Lukas Wolf · Victor Gillioz · Roger Wattenhofer · Nicolas Langer -
2021 Spotlight: DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks »
Pál András Papp · Karolis Martinkus · Lukas Faber · Roger Wattenhofer -
2022 : Neural Combinatorial Logic Circuit Synthesis from Input-Output Examples »
Peter Belcak · Roger Wattenhofer -
2022 : Agent-based Graph Neural Networks »
Karolis Martinkus · Pál András Papp · Benedikt Schesch · Roger Wattenhofer -
2022 : Diffusion Models for Graphs Benefit From Discrete State Spaces »
Kilian Haefeli · Karolis Martinkus · Nathanael Perraudin · Roger Wattenhofer -
2022 : Electrode Clustering and Bandpass Analysis of EEG Data for Gaze Estimation »
Ard Kastrati · Martyna Plomecka · Joël Küchler · Nicolas Langer · Roger Wattenhofer -
2022 : Electrode Clustering and Bandpass Analysis of EEG Data for Gaze Estimation »
Ard Kastrati · Martyna Plomecka · Joël Küchler · Nicolas Langer · Roger Wattenhofer -
2021 : KDSalBox: A toolbox of efficient knowledge-distilled saliency models »
Ard Kastrati · Zoya Bylinskii · Eli Shechtman -
2021 Poster: DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks »
Pál András Papp · Karolis Martinkus · Lukas Faber · Roger Wattenhofer