Timezone: »
Echocardiography is one of the most commonly used diagnostic imaging modalities in cardiology. Application of deep learning models to echocardiograms can enable automated identification of cardiac structures, estimation of cardiac function, and prediction of clinical outcomes. However, a major hindrance to realizing the full potential of deep learning is the lack of large-scale, fully curated and annotated data sets required for supervised training. High-quality pre-trained representations that can transfer useful visual features of echocardiograms to downstream tasks can help adapt deep learning models to new setups using fewer examples. In this paper, we design a suite of benchmarks that can be used to pre-train and evaluate echocardiographic representations with respect to various clinically-relevant tasks using publicly accessible data sets. In addition, we develop a unified evaluation protocol---which we call the echocardiographic task adaptation benchmark (ETAB)---that measures how well a visual representation of echocardiograms generalizes to common downstream tasks of interest. We use our benchmarking framework to evaluate state-of-the-art vision modeling pipelines. We envision that our standardized, publicly accessible benchmarks would encourage future research and expedite progress in applying deep learning to high-impact problems in cardiovascular medicine.
Author Information
Ahmed M. Alaa (UC Berkeley)
Anthony Philippakis
David Sontag (MIT)
More from the Same Authors
-
2022 : PEST: Combining Parameter-Efficient Fine-Tuning with Self-Training and Co-Training »
Hunter Lang · Monica Agrawal · Yoon Kim · David Sontag -
2022 Poster: Falsification before Extrapolation in Causal Effect Estimation »
Zeshan M Hussain · Michael Oberst · Ming-Chieh Shih · David Sontag -
2022 Poster: Evaluating Robustness to Dataset Shift via Parametric Robustness Sets »
Nikolaj Thams · Michael Oberst · David Sontag -
2022 Poster: Training Subset Selection for Weak Supervision »
Hunter Lang · Aravindan Vijayaraghavan · David Sontag -
2021 Poster: Conformal Time-series Forecasting »
Kamile Stankeviciute · Ahmed M. Alaa · Mihaela van der Schaar -
2021 Poster: Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance »
Justin Lim · Christina Ji · Michael Oberst · Saul Blecker · Leora Horwitz · David Sontag -
2018 : TBC 13 »
David Sontag -
2018 Poster: Why Is My Classifier Discriminatory? »
Irene Chen · Fredrik Johansson · David Sontag -
2018 Spotlight: Why Is My Classifier Discriminatory? »
Irene Chen · Fredrik Johansson · David Sontag -
2018 Poster: Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks »
Bryan Lim · Ahmed M. Alaa · Mihaela van der Schaar -
2017 : Invited Talk 4 »
David Sontag -
2017 Poster: Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks »
Ahmed M. Alaa · Mihaela van der Schaar -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Spotlight: Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks »
Ahmed M. Alaa · Mihaela van der Schaar -
2017 Poster: Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes »
Ahmed M. Alaa · Mihaela van der Schaar -
2016 Poster: Balancing Suspense and Surprise: Timely Decision Making with Endogenous Information Acquisition »
Ahmed M. Alaa · Mihaela van der Schaar -
2015 Workshop: Machine Learning For Healthcare (MLHC) »
Theofanis Karaletsos · Rajesh Ranganath · Suchi Saria · David Sontag -
2015 Poster: Barrier Frank-Wolfe for Marginal Inference »
Rahul G Krishnan · Simon Lacoste-Julien · David Sontag -
2013 Poster: Discovering Hidden Variables in Noisy-Or Networks using Quartet Tests »
Yacine Jernite · Yoni Halpern · David Sontag -
2011 Poster: Complexity of Inference in Latent Dirichlet Allocation »
David Sontag · Daniel Roy -
2011 Spotlight: Complexity of Inference in Latent Dirichlet Allocation »
David Sontag · Daniel Roy -
2010 Spotlight: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2010 Poster: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2009 Workshop: Approximate Learning of Large Scale Graphical Models »
Russ Salakhutdinov · Amir Globerson · David Sontag -
2008 Workshop: Approximate inference - how far have we come? »
Amir Globerson · David Sontag · Tommi Jaakkola -
2008 Poster: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2008 Spotlight: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2007 Oral: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola -
2007 Poster: New Outer Bounds on the Marginal Polytope »
David Sontag · Tommi Jaakkola