Timezone: »
Causal discovery aims to recover causal structures generating the observational data. Despite its success in certain problems, in many real-world scenarios the observed variables are not the target variables of interest, but the imperfect measures of the target variables. Causal discovery under measurement error aims to recover the causal graph among unobserved target variables from observations made with measurement error. We consider a specific formulation of the problem, where the unobserved target variables follow a linear non-Gaussian acyclic model, and the measurement process follows the random measurement error model. Existing methods on this formulation rely on non-scalable over-complete independent component analysis (OICA). In this work, we propose the Transformed Independent Noise (TIN) condition, which checks for independence between a specific linear transformation of some measured variables and certain other measured variables. By leveraging the non-Gaussianity and higher-order statistics of data, TIN is informative about the graph structure among the unobserved target variables. By utilizing TIN, the ordered group decomposition of the causal model is identifiable. In other words, we could achieve what once required OICA to achieve by only conducting independence tests. Experimental results on both synthetic and real-world data demonstrate the effectiveness and reliability of our method.
Author Information
Haoyue Dai (Carnegie Mellon University)
Peter Spirtes (Carnegie Mellon University)
Kun Zhang (CMU & MBZUAI)
More from the Same Authors
-
2022 : Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors »
Zeyu Tang · Yatong Chen · Yang Liu · Kun Zhang -
2022 : Scalable Causal Discovery with Score Matching »
Francesco Montagna · Nicoletta Noceti · Lorenzo Rosasco · Kun Zhang · Francesco Locatello -
2022 Spotlight: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 : Learning Causal Structures and Causal Representations from Data »
Peter Spirtes -
2022 Workshop: Causal Machine Learning for Real-World Impact »
Nick Pawlowski · Jeroen Berrevoets · Caroline Uhler · Kun Zhang · Mihaela van der Schaar · Cheng Zhang -
2022 Poster: On the Identifiability of Nonlinear ICA: Sparsity and Beyond »
Yujia Zheng · Ignavier Ng · Kun Zhang -
2022 Poster: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 Poster: MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models »
Erdun Gao · Ignavier Ng · Mingming Gong · Li Shen · Wei Huang · Tongliang Liu · Kun Zhang · Howard Bondell -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2022 Poster: Unsupervised Image-to-Image Translation with Density Changing Regularization »
Shaoan Xie · Qirong Ho · Kun Zhang -
2022 Poster: Factored Adaptation for Non-Stationary Reinforcement Learning »
Fan Feng · Biwei Huang · Kun Zhang · Sara Magliacane -
2022 Poster: Counterfactual Fairness with Partially Known Causal Graph »
Aoqi Zuo · Susan Wei · Tongliang Liu · Bo Han · Kun Zhang · Mingming Gong -
2022 Poster: Temporally Disentangled Representation Learning »
Weiran Yao · Guangyi Chen · Kun Zhang -
2022 Poster: Truncated Matrix Power Iteration for Differentiable DAG Learning »
Zhen Zhang · Ignavier Ng · Dong Gong · Yuhang Liu · Ehsan Abbasnejad · Mingming Gong · Kun Zhang · Javen Qinfeng Shi -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2017 Poster: Learning Causal Structures Using Regression Invariance »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Kun Zhang -
2009 Poster: Nonlinear directed acyclic structure learning with weakly additive noise models »
Robert E Tillman · Arthur Gretton · Peter Spirtes