Timezone: »
Multi-view anchor graph clustering selects representative anchors to avoid full pair-wise similarities and therefore reduce the complexity of graph methods. Although widely applied in large-scale applications, existing approaches do not pay sufficient attention to establishing correct correspondences between the anchor sets across views. To be specific, anchor graphs obtained from different views are not aligned column-wisely. Such an Anchor-Unaligned Problem (AUP) would cause inaccurate graph fusion and degrade the clustering performance. Under multi-view scenarios, generating correct correspondences could be extremely difficult since anchors are not consistent in feature dimensions. To solve this challenging issue, we propose the first study of the generalized and flexible anchor graph fusion framework termed Fast Multi-View Anchor-Correspondence Clustering (FMVACC). Specifically, we show how to find anchor correspondence with both feature and structure information, after which anchor graph fusion is performed column-wisely. Moreover, we theoretically show the connection between FMVACC and existing multi-view late fusion and partial view-aligned clustering, which further demonstrates our generality. Extensive experiments on seven benchmark datasets demonstrate the effectiveness and efficiency of our proposed method. Moreover, the proposed alignment module also shows significant performance improvement applying to existing multi-view anchor graph competitors indicating the importance of anchor alignment. Our code is available at \url{https://github.com/wangsiwei2010/NeurIPS22-FMVACC}.
Author Information
Siwei Wang (NUDT)
Xinwang Liu (National University of Defense Technology)
Suyuan Liu (National University of Defense Technology)
Jiaqi Jin (National University of Defense Technology)
Wenxuan Tu (National University of Defense Technology)
Xinzhong Zhu (Zhejiang Normal University)
En Zhu (National University of Defense Technology)
More from the Same Authors
-
2023 Poster: On the Properties of Kullback-Leibler Divergence Between Multivariate Gaussian Distributions »
Yufeng Zhang · Jialu Pan · Wanwei Liu · Zhenbang Chen · Xinwang Liu · J Wang · Li Ken Li -
2023 Poster: RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization »
Siqi Shen · Chennan Ma · Chao Li · Weiquan Liu · Yongquan Fu · Songzhu Mei · Xinwang Liu · Cheng Wang -
2022 Spotlight: ResQ: A Residual Q Function-based Approach for Multi-Agent Reinforcement Learning Value Factorization »
Siqi Shen · Mengwei Qiu · Jun Liu · Weiquan Liu · Yongquan Fu · Xinwang Liu · Cheng Wang -
2022 Spotlight: Stability and Generalization of Kernel Clustering: from Single Kernel to Multiple Kernel »
Weixuan Liang · Xinwang Liu · Yong Liu · sihang zhou · Jun-Jie Huang · Siwei Wang · Jiyuan Liu · Yi Zhang · En Zhu -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Align then Fusion: Generalized Large-scale Multi-view Clustering with Anchor Matching Correspondences »
Siwei Wang · Xinwang Liu · Suyuan Liu · Jiaqi Jin · Wenxuan Tu · Xinzhong Zhu · En Zhu -
2022 Poster: ResQ: A Residual Q Function-based Approach for Multi-Agent Reinforcement Learning Value Factorization »
Siqi Shen · Mengwei Qiu · Jun Liu · Weiquan Liu · Yongquan Fu · Xinwang Liu · Cheng Wang -
2022 Poster: Stability and Generalization of Kernel Clustering: from Single Kernel to Multiple Kernel »
Weixuan Liang · Xinwang Liu · Yong Liu · sihang zhou · Jun-Jie Huang · Siwei Wang · Jiyuan Liu · Yi Zhang · En Zhu -
2019 Poster: Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network »
Siqi Wang · Yijie Zeng · Xinwang Liu · En Zhu · Jianping Yin · Chuanfu Xu · Marius Kloft