Timezone: »
Video restoration aims at restoring multiple high-quality frames from multiple low-quality frames. Existing video restoration methods generally fall into two extreme cases, i.e., they either restore all frames in parallel or restore the video frame by frame in a recurrent way, which would result in different merits and drawbacks. Typically, the former has the advantage of temporal information fusion. However, it suffers from large model size and intensive memory consumption; the latter has a relatively small model size as it shares parameters across frames; however, it lacks long-range dependency modeling ability and parallelizability. In this paper, we attempt to integrate the advantages of the two cases by proposing a recurrent video restoration transformer, namely RVRT. RVRT processes local neighboring frames in parallel within a globally recurrent framework which can achieve a good trade-off between model size, effectiveness, and efficiency. Specifically, RVRT divides the video into multiple clips and uses the previously inferred clip feature to estimate the subsequent clip feature. Within each clip, different frame features are jointly updated with implicit feature aggregation. Across different clips, the guided deformable attention is designed for clip-to-clip alignment, which predicts multiple relevant locations from the whole inferred clip and aggregates their features by the attention mechanism. Extensive experiments on video super-resolution, deblurring, and denoising show that the proposed RVRT achieves state-of-the-art performance on benchmark datasets with balanced model size, testing memory and runtime.
Author Information
Jingyun Liang (ETH Zurich)
Yuchen Fan (University of Illinois Urbana-Champaign)
Xiaoyu Xiang (Meta)
Rakesh Ranjan (Meta)
Eddy Ilg
Simon Green (Facebook)
Jiezhang Cao (ETH Zürich)
Kai Zhang (ETH Zurich)
Radu Timofte (Bayerische Julius-Maximilians-Universität Würzburg)
Luc V Gool (Computer Vision Lab, ETH Zurich)
More from the Same Authors
-
2019 Poster: Gated CRF Loss for Weakly Supervised Semantic Image Segmentation »
Anton Obukhov · Stamatios Georgoulis · Dengxin Dai · Luc V Gool -
2021 : Spatial-Temporal Gated Transformersfor Efficient Video Processing »
Yawei Li · Babak Ehteshami Bejnordi · Bert Moons · Tijmen Blankevoort · Amirhossein Habibian · Radu Timofte · Luc V Gool -
2023 Poster: Revisiting Evaluation Metrics for Semantic Segmentation: Optimization and Evaluation of Fine-grained Intersection over Union »
Zifu Wang · Maxim Berman · Amal Rannen-Triki · Philip Torr · Devis Tuia · Tinne Tuytelaars · Luc V Gool · Jiaqian Yu · Matthew Blaschko -
2023 Poster: LART: Neural Correspondence Learning with Latent Regularization Transformer for 3D Motion Transfer »
Haoyu Chen · Hao Tang · Radu Timofte · Luc V Gool · Guoying Zhao -
2023 Poster: Autodecoding Latent 3D Diffusion Models »
Evangelos Ntavelis · Aliaksandr Siarohin · Kyle Olszewski · Chaoyang Wang · Luc V Gool · Sergey Tulyakov -
2023 Poster: Real-Time Motion Prediction via Heterogeneous Polyline Transformer with Relative Pose Encoding »
Zhejun Zhang · Alexander Liniger · Christos Sakaridis · Fisher Yu · Luc V Gool -
2022 Spotlight: Lightning Talks 5A-4 »
Yangrui Chen · Zhiyang Chen · Liang Zhang · Hanqing Wang · Jiaqi Han · Shuchen Wu · shaohui peng · Ganqu Cui · Yoav Kolumbus · Noemi Elteto · Xing Hu · Anwen Hu · Wei Liang · Cong Xie · Lifan Yuan · Noam Nisan · Wenbing Huang · Yousong Zhu · Ishita Dasgupta · Luc V Gool · Tingyang Xu · Rui Zhang · Qin Jin · Zhaowen Li · Meng Ma · Bingxiang He · Yangyi Chen · Juncheng Gu · Wenguan Wang · Ke Tang · Yu Rong · Eric Schulz · Fan Yang · Wei Li · Zhiyuan Liu · Jiaming Guo · Yanghua Peng · Haibin Lin · Haixin Wang · Qi Yi · Maosong Sun · Ruizhi Chen · Chuan Wu · Chaoyang Zhao · Yibo Zhu · Liwei Wu · xishan zhang · Zidong Du · Rui Zhao · Jinqiao Wang · Ling Li · Qi Guo · Ming Tang · Yunji Chen -
2022 Spotlight: Towards Versatile Embodied Navigation »
Hanqing Wang · Wei Liang · Luc V Gool · Wenguan Wang -
2022 Spotlight: Recurrent Video Restoration Transformer with Guided Deformable Attention »
Jingyun Liang · Yuchen Fan · Xiaoyu Xiang · Rakesh Ranjan · Eddy Ilg · Simon Green · Jiezhang Cao · Kai Zhang · Radu Timofte · Luc V Gool -
2022 Poster: I2DFormer: Learning Image to Document Attention for Zero-Shot Image Classification »
Muhammad Ferjad Naeem · Yongqin Xian · Luc V Gool · Federico Tombari -
2022 Poster: Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral Compressive Imaging »
Yuanhao Cai · Jing Lin · Haoqian Wang · Xin Yuan · Henghui Ding · Yulun Zhang · Radu Timofte · Luc V Gool -
2022 Poster: Towards Versatile Embodied Navigation »
Hanqing Wang · Wei Liang · Luc V Gool · Wenguan Wang -
2021 Poster: Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations »
Wouter Van Gansbeke · Simon Vandenhende · Stamatios Georgoulis · Luc V Gool -
2020 Poster: GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network »
Prune Truong · Martin Danelljan · Luc V Gool · Radu Timofte -
2020 Poster: Soft Contrastive Learning for Visual Localization »
Janine Thoma · Danda Pani Paudel · Luc V Gool -
2017 Poster: Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations »
Eirikur Agustsson · Fabian Mentzer · Michael Tschannen · Lukas Cavigelli · Radu Timofte · Luca Benini · Luc V Gool -
2016 Poster: Dynamic Filter Networks »
Xu Jia · Bert De Brabandere · Tinne Tuytelaars · Luc V Gool -
2014 Poster: Quantized Kernel Learning for Feature Matching »
Danfeng Qin · Xuanli Chen · Matthieu Guillaumin · Luc V Gool -
2014 Poster: Self-Adaptable Templates for Feature Coding »
Xavier Boix · Gemma Roig · Salomon Diether · Luc V Gool -
2011 Poster: Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities »
Angela Yao · Juergen Gall · Luc V Gool · Raquel Urtasun