Timezone: »
Poster
Stability and Generalization of Kernel Clustering: from Single Kernel to Multiple Kernel
Weixuan Liang · Xinwang Liu · Yong Liu · sihang zhou · Jun-Jie Huang · Siwei Wang · Jiyuan Liu · Yi Zhang · En Zhu
Multiple kernel clustering (MKC) is an important research topic that has been widely studied for decades. However, current methods still face two problems: inefficient when handling out-of-sample data points and lack of theoretical study of the stability and generalization of clustering. In this paper, we propose a novel method that can efficiently compute the embedding of out-of-sample data with a solid generalization guarantee. Specifically, we approximate the eigen functions of the integral operator associated with the linear combination of base kernel functions to construct low-dimensional embeddings of out-of-sample points for efficient multiple kernel clustering. In addition, we, for the first time, theoretically study the stability of clustering algorithms and prove that the single-view version of the proposed method has uniform stability as $\mathcal{O}\left(Kn^{-3/2}\right)$ and establish an upper bound of excess risk as $\widetilde{\mathcal{O}}\left(Kn^{-3/2}+n^{-1/2}\right)$, where $K$ is the cluster number and $n$ is the number of samples. We then extend the theoretical results to multiple kernel scenarios and find that the stability of MKC depends on kernel weights. As an example, we apply our method to a novel MKC algorithm termed SimpleMKKM and derive the upper bound of its excess clustering risk, which is tighter than the current results. Extensive experimental results validate the effectiveness and efficiency of the proposed method.
Author Information
Weixuan Liang (National University of Defense Technology)
Xinwang Liu (National University of Defense Technology)
Yong Liu (Renmin University of China)
sihang zhou (National University of Defense Technology)
Jun-Jie Huang (National University of Defense Technology)
Siwei Wang (NUDT)
Jiyuan Liu (National University of Defense Technology)
Yi Zhang (NUDT)
En Zhu (National University of Defense Technology)
More from the Same Authors
-
2021 Spotlight: Improved Learning Rates of a Functional Lasso-type SVM with Sparse Multi-Kernel Representation »
shaogao lv · Junhui Wang · Jiankun Liu · Yong Liu -
2021 Spotlight: Refined Learning Bounds for Kernel and Approximate $k$-Means »
Yong Liu -
2022 Poster: Fine-Grained Analysis of Stability and Generalization for Modern Meta Learning Algorithms »
Jiechao Guan · Yong Liu · Zhiwu Lu -
2022 Poster: Align then Fusion: Generalized Large-scale Multi-view Clustering with Anchor Matching Correspondences »
Siwei Wang · Xinwang Liu · Suyuan Liu · Jiaqi Jin · Wenxuan Tu · Xinzhong Zhu · En Zhu -
2022 Spotlight: ResQ: A Residual Q Function-based Approach for Multi-Agent Reinforcement Learning Value Factorization »
Siqi Shen · Mengwei Qiu · Jun Liu · Weiquan Liu · Yongquan Fu · Xinwang Liu · Cheng Wang -
2022 Spotlight: Fine-Grained Analysis of Stability and Generalization for Modern Meta Learning Algorithms »
Jiechao Guan · Yong Liu · Zhiwu Lu -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Spotlight: Stability and Generalization of Kernel Clustering: from Single Kernel to Multiple Kernel »
Weixuan Liang · Xinwang Liu · Yong Liu · sihang zhou · Jun-Jie Huang · Siwei Wang · Jiyuan Liu · Yi Zhang · En Zhu -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Align then Fusion: Generalized Large-scale Multi-view Clustering with Anchor Matching Correspondences »
Siwei Wang · Xinwang Liu · Suyuan Liu · Jiaqi Jin · Wenxuan Tu · Xinzhong Zhu · En Zhu -
2022 Poster: ResQ: A Residual Q Function-based Approach for Multi-Agent Reinforcement Learning Value Factorization »
Siqi Shen · Mengwei Qiu · Jun Liu · Weiquan Liu · Yongquan Fu · Xinwang Liu · Cheng Wang -
2022 Poster: Randomized Sketches for Clustering: Fast and Optimal Kernel $k$-Means »
Rong Yin · Yong Liu · Weiping Wang · Dan Meng -
2021 Poster: Towards Sharper Generalization Bounds for Structured Prediction »
Shaojie Li · Yong Liu -
2021 Poster: Refined Learning Bounds for Kernel and Approximate $k$-Means »
Yong Liu -
2021 Poster: Improved Learning Rates of a Functional Lasso-type SVM with Sparse Multi-Kernel Representation »
shaogao lv · Junhui Wang · Jiankun Liu · Yong Liu -
2019 Poster: Two Generator Game: Learning to Sample via Linear Goodness-of-Fit Test »
Lizhong Ding · Mengyang Yu · Li Liu · Fan Zhu · Yong Liu · Yu Li · Ling Shao -
2019 Poster: Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network »
Siqi Wang · Yijie Zeng · Xinwang Liu · En Zhu · Jianping Yin · Chuanfu Xu · Marius Kloft -
2018 Poster: Multi-Class Learning: From Theory to Algorithm »
Jian Li · Yong Liu · Rong Yin · Hua Zhang · Lizhong Ding · Weiping Wang