Timezone: »
Recently, Transformer architecture has been introduced into image restoration to replace convolution neural network (CNN) with surprising results. Considering the high computational complexity of Transformer with global attention, some methods use the local square window to limit the scope of self-attention. However, these methods lack direct interaction among different windows, which limits the establishment of long-range dependencies. To address the above issue, we propose a new image restoration model, Cross Aggregation Transformer (CAT). The core of our CAT is the Rectangle-Window Self-Attention (Rwin-SA), which utilizes horizontal and vertical rectangle window attention in different heads parallelly to expand the attention area and aggregate the features cross different windows. We also introduce the Axial-Shift operation for different window interactions. Furthermore, we propose the Locality Complementary Module to complement the self-attention mechanism, which incorporates the inductive bias of CNN (e.g., translation invariance and locality) into Transformer, enabling global-local coupling. Extensive experiments demonstrate that our CAT outperforms recent state-of-the-art methods on several image restoration applications. The code and models are available at https://github.com/zhengchen1999/CAT.
Author Information
Zheng Chen (Shanghai Jiao Tong University)
Yulun Zhang (ETH Zürich)
Jinjin Gu (University of Sydney)
yongbing zhang (Harbin Institute of Technology (Shenzhen))
Linghe Kong (Shanghai Jiao Tong University)
Xin Yuan (Westlake University)
More from the Same Authors
-
2021 Spotlight: Aligned Structured Sparsity Learning for Efficient Image Super-Resolution »
Yulun Zhang · Huan Wang · Can Qin · Yun Fu -
2022 Poster: Rethinking Alignment in Video Super-Resolution Transformers »
Shuwei Shi · Jinjin Gu · Liangbin Xie · Xintao Wang · Yujiu Yang · Chao Dong -
2022 : On the Sparsity of Image Super-resolution Network »
Chenyu Dong · Hailong Ma · Jinjin Gu · Ruofan Zhang · Jieming Li · Chun Yuan -
2022 Spotlight: Cross Aggregation Transformer for Image Restoration »
Zheng Chen · Yulun Zhang · Jinjin Gu · yongbing zhang · Linghe Kong · Xin Yuan -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral Compressive Imaging »
Yuanhao Cai · Jing Lin · Haoqian Wang · Xin Yuan · Henghui Ding · Yulun Zhang · Radu Timofte · Luc V Gool -
2021 Poster: Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation »
Can Qin · Handong Zhao · Lichen Wang · Huan Wang · Yulun Zhang · Yun Fu -
2021 Poster: Aligned Structured Sparsity Learning for Efficient Image Super-Resolution »
Yulun Zhang · Huan Wang · Can Qin · Yun Fu -
2021 Poster: TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification »
Zhuchen Shao · Hao Bian · Yang Chen · Yifeng Wang · Jian Zhang · Xiangyang Ji · yongbing zhang -
2021 Poster: Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware Adversarial Training »
Yuanhao Cai · Xiaowan Hu · Haoqian Wang · Yulun Zhang · Hanspeter Pfister · Donglai Wei -
2020 Poster: Neural Sparse Representation for Image Restoration »
Yuchen Fan · Jiahui Yu · Yiqun Mei · Yulun Zhang · Yun Fu · Ding Liu · Thomas Huang