Timezone: »
Predicting multimodal future behavior of traffic participants is essential for robotic vehicles to make safe decisions. Existing works explore to directly predict future trajectories based on latent features or utilize dense goal candidates to identify agent's destinations, where the former strategy converges slowly since all motion modes are derived from the same feature while the latter strategy has efficiency issue since its performance highly relies on the density of goal candidates. In this paper, we propose the Motion TRansformer (MTR) framework that models motion prediction as the joint optimization of global intention localization and local movement refinement. Instead of using goal candidates, MTR incorporates spatial intention priors by adopting a small set of learnable motion query pairs. Each motion query pair takes charge of trajectory prediction and refinement for a specific motion mode, which stabilizes the training process and facilitates better multimodal predictions. Experiments show that MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges, ranking 1st on the leaderbaords of Waymo Open Motion Dataset. Code will be available at https://github.com/sshaoshuai/MTR.
Author Information
Shaoshuai Shi (Saarland Informatics Campus, Max-Planck Institute)
Li Jiang (Max-Planck Institute)
Dengxin Dai (Saarland Informatics Campus, Max-Planck Institute)
Bernt Schiele (Max Planck Institute for Informatics)
More from the Same Authors
-
2020 : Paper 21: Haar Wavelet based Block Autoregressive Flows for Trajectories »
Apratim Bhattacharyya · Christoph-Nikolas Straehle · Mario Fritz · Bernt Schiele -
2022 Poster: CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds »
Haiyang Wang · Lihe Ding · Shaocong Dong · Shaoshuai Shi · Aoxue Li · Jianan Li · Zhenguo Li · Liwei Wang -
2022 Poster: Towards Efficient 3D Object Detection with Knowledge Distillation »
Jihan Yang · Shaoshuai Shi · Runyu Ding · Zhe Wang · Xiaojuan Qi -
2022 Panel: Panel 2C-8: The Minority Matters:… & Motion Transformer with… »
Shaoshuai Shi · Shilong Bao -
2022 Poster: Assaying Out-Of-Distribution Generalization in Transfer Learning »
Florian Wenzel · Andrea Dittadi · Peter Gehler · Carl-Johann Simon-Gabriel · Max Horn · Dominik Zietlow · David Kernert · Chris Russell · Thomas Brox · Bernt Schiele · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: USB: A Unified Semi-supervised Learning Benchmark for Classification »
Yidong Wang · Hao Chen · Yue Fan · Wang SUN · Ran Tao · Wenxin Hou · Renjie Wang · Linyi Yang · Zhi Zhou · Lan-Zhe Guo · Heli Qi · Zhen Wu · Yu-Feng Li · Satoshi Nakamura · Wei Ye · Marios Savvides · Bhiksha Raj · Takahiro Shinozaki · Bernt Schiele · Jindong Wang · Xing Xie · Yue Zhang -
2022 Poster: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling »
Xiaoyang Wu · Yixing Lao · Li Jiang · Xihui Liu · Hengshuang Zhao -
2021 Poster: RMM: Reinforced Memory Management for Class-Incremental Learning »
Yaoyao Liu · Bernt Schiele · Qianru Sun -
2020 Poster: Attribute Prototype Network for Zero-Shot Learning »
Wenjia Xu · Yongqin Xian · Jiuniu Wang · Bernt Schiele · Zeynep Akata -
2020 Poster: Deep Wiener Deconvolution: Wiener Meets Deep Learning for Image Deblurring »
Jiangxin Dong · Stefan Roth · Bernt Schiele -
2020 Oral: Deep Wiener Deconvolution: Wiener Meets Deep Learning for Image Deblurring »
Jiangxin Dong · Stefan Roth · Bernt Schiele -
2019 Poster: Learning to Self-Train for Semi-Supervised Few-Shot Classification »
Xinzhe Li · Qianru Sun · Yaoyao Liu · Qin Zhou · Shibao Zheng · Tat-Seng Chua · Bernt Schiele -
2018 Poster: Adversarial Scene Editing: Automatic Object Removal from Weak Supervision »
Rakshith R Shetty · Mario Fritz · Bernt Schiele -
2017 Poster: Pose Guided Person Image Generation »
Liqian Ma · Xu Jia · Qianru Sun · Bernt Schiele · Tinne Tuytelaars · Luc Van Gool -
2016 Poster: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2016 Oral: Learning What and Where to Draw »
Scott E Reed · Zeynep Akata · Santosh Mohan · Samuel Tenka · Bernt Schiele · Honglak Lee -
2015 Poster: Efficient Output Kernel Learning for Multiple Tasks »
Pratik Kumar Jawanpuria · Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Poster: Top-k Multiclass SVM »
Maksim Lapin · Matthias Hein · Bernt Schiele -
2015 Spotlight: Top-k Multiclass SVM »
Maksim Lapin · Matthias Hein · Bernt Schiele -
2013 Poster: Transfer Learning in a Transductive Setting »
Marcus Rohrbach · Sandra Ebert · Bernt Schiele