Timezone: »
Diffusion Probabilistic Models (DPMs) have shown a powerful capacity of generating high-quality image samples. Recently, diffusion autoencoders (Diff-AE) are proposed to explore DPMs for representation learning via autoencoding and succeed in various downstream tasks. Their key idea is to jointly train an encoder for discovering meaningful representations from images and a conditional DPM as the decoder for reconstructing images. Considering that training DPMs from scratch will take a long time and there have existed numerous pre-trained DPMs, we propose \textbf{P}re-trained \textbf{D}PM \textbf{A}uto\textbf{E}ncoding (\textbf{PDAE}), a general method to adapt existing pre-trained DPMs to the decoders for image reconstruction, with better training efficiency and performance than Diff-AE. Specifically, we find that the reanson that pre-trained DPMs fail to reconstruct an image from its latent variables is due to the information loss of forward process, which causes a gap between their predicted posterior mean and the true one. From this perspective, the classifier-guided sampling method can be explained as computing an extra mean shift to fill the gap, reconstructing the lost class information in samples. These imply that the gap corresponds to the lost information of the image, and we can reconstruct the image by filling the gap. Drawing inspiration from this, we employ a trainable model to predict a mean shift according to encoded representation and train it to fill as much gap as possible, in this way, the encoder is forced to learn as much information as possible from images to help the filling. By resuing a part of network of pre-trained DPMs and redesigning the weighting scheme of diffusion loss, PDAE can learn meaningful representations from images efficiently. Extensive experiments denonstrate the effectiveness, efficiency and flexibility of PDAE.
Author Information
Zijian Zhang (Zhejiang University)
Zhou Zhao (Zhejiang University)
Zhijie Lin (Zhejiang University)
More from the Same Authors
-
2022 Poster: GenerSpeech: Towards Style Transfer for Generalizable Out-Of-Domain Text-to-Speech »
Rongjie Huang · Yi Ren · Jinglin Liu · Chenye Cui · Zhou Zhao -
2022 Poster: Towards Effective Multi-Modal Interchanges in Zero-Resource Sounding Object Localization »
Yang Zhao · Chen Zhang · Haifeng Huang · Haoyuan Li · Zhou Zhao -
2022 Poster: Dict-TTS: Learning to Pronounce with Prior Dictionary Knowledge for Text-to-Speech »
Ziyue Jiang · Zhe Su · Zhou Zhao · Qian Yang · Yi Ren · Jinglin Liu · 振辉 叶 -
2022 Poster: M4Singer: A Multi-Style, Multi-Singer and Musical Score Provided Mandarin Singing Corpus »
Lichao Zhang · Ruiqi Li · Shoutong Wang · Liqun Deng · Jinglin Liu · Yi Ren · Jinzheng He · Rongjie Huang · Jieming Zhu · Xiao Chen · Zhou Zhao -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: Dict-TTS: Learning to Pronounce with Prior Dictionary Knowledge for Text-to-Speech »
Ziyue Jiang · Zhe Su · Zhou Zhao · Qian Yang · Yi Ren · Jinglin Liu · 振辉 叶 -
2022 Spotlight: GenerSpeech: Towards Style Transfer for Generalizable Out-Of-Domain Text-to-Speech »
Rongjie Huang · Yi Ren · Jinglin Liu · Chenye Cui · Zhou Zhao -
2022 Spotlight: M4Singer: A Multi-Style, Multi-Singer and Musical Score Provided Mandarin Singing Corpus »
Lichao Zhang · Ruiqi Li · Shoutong Wang · Liqun Deng · Jinglin Liu · Yi Ren · Jinzheng He · Rongjie Huang · Jieming Zhu · Xiao Chen · Zhou Zhao -
2021 Poster: PortaSpeech: Portable and High-Quality Generative Text-to-Speech »
Yi Ren · Jinglin Liu · Zhou Zhao -
2021 Poster: Generalizable Multi-linear Attention Network »
Tao Jin · Zhou Zhao -
2020 Poster: Counterfactual Contrastive Learning for Weakly-Supervised Vision-Language Grounding »
Zhu Zhang · Zhou Zhao · Zhijie Lin · jieming zhu · Xiuqiang He -
2019 Poster: FastSpeech: Fast, Robust and Controllable Text to Speech »
Yi Ren · Yangjun Ruan · Xu Tan · Tao Qin · Sheng Zhao · Zhou Zhao · Tie-Yan Liu -
2018 Poster: MacNet: Transferring Knowledge from Machine Comprehension to Sequence-to-Sequence Models »
Boyuan Pan · Yazheng Yang · Hao Li · Zhou Zhao · Yueting Zhuang · Deng Cai · Xiaofei He