Timezone: »
Semi-Supervised Semantic Segmentation aims at training the segmentation model with limited labeled data and a large amount of unlabeled data. To effectively leverage the unlabeled data, pseudo labeling, along with the teacher-student framework, is widely adopted in semi-supervised semantic segmentation. Though proved to be effective, this paradigm suffers from incorrect pseudo labels which inevitably exist and are taken as auxiliary training data. To alleviate the negative impact of incorrect pseudo labels, we delve into the current Semi-Supervised Semantic Segmentation frameworks. We argue that the unlabeled data with pseudo labels can facilitate the learning of representative features in the feature extractor, but it is unreliable to supervise the mask predictor. Motivated by this consideration, we propose a novel framework, Gentle Teaching Assistant (GTA-Seg) to disentangle the effects of pseudo labels on feature extractor and mask predictor of the student model. Specifically, in addition to the original teacher-student framework, our method introduces a teaching assistant network which directly learns from pseudo labels generated by the teacher network. The gentle teaching assistant (GTA) is coined gentle since it only transfers the beneficial feature representation knowledge in the feature extractor to the student model in an Exponential Moving Average (EMA) manner, protecting the student model from the negative influences caused by unreliable pseudo labels in the mask predictor. The student model is also supervised by reliable labeled data to train an accurate mask predictor, further facilitating feature representation. Extensive experiment results on benchmark datasets validate that our method shows competitive performance against previous methods. We promise to release our code towards reproducibility.
Author Information
Ying Jin (The Chinese University of Hong Kong)
Jiaqi Wang (The Chinese University of Hong Kong)
Dahua Lin (The Chinese University of Hong Kong)
More from the Same Authors
-
2022 Poster: Audio-Driven Co-Speech Gesture Video Generation »
Xian Liu · Qianyi Wu · Hang Zhou · Yuanqi Du · Wayne Wu · Dahua Lin · Ziwei Liu -
2022 : Factor Investing with a Deep Multi-Factor Model »
Zikai Wei · Bo Dai · Dahua Lin -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: Audio-Driven Co-Speech Gesture Video Generation »
Xian Liu · Qianyi Wu · Hang Zhou · Yuanqi Du · Wayne Wu · Dahua Lin · Ziwei Liu -
2021 Poster: Generative Occupancy Fields for 3D Surface-Aware Image Synthesis »
Xudong XU · Xingang Pan · Dahua Lin · Bo Dai -
2021 Poster: Balanced Chamfer Distance as a Comprehensive Metric for Point Cloud Completion »
Tong Wu · Liang Pan · Junzhe Zhang · Tai WANG · Ziwei Liu · Dahua Lin -
2021 Poster: Few-Shot Object Detection via Association and DIscrimination »
Yuhang Cao · Jiaqi Wang · Ying Jin · Tong Wu · Kai Chen · Ziwei Liu · Dahua Lin -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Policy Continuation with Hindsight Inverse Dynamics »
Hao Sun · Zhizhong Li · Xiaotong Liu · Bolei Zhou · Dahua Lin -
2019 Spotlight: Policy Continuation with Hindsight Inverse Dynamics »
Hao Sun · Zhizhong Li · Xiaotong Liu · Bolei Zhou · Dahua Lin -
2018 Poster: A Neural Compositional Paradigm for Image Captioning »
Bo Dai · Sanja Fidler · Dahua Lin -
2018 Poster: Trajectory Convolution for Action Recognition »
Yue Zhao · Yuanjun Xiong · Dahua Lin -
2017 Poster: Contrastive Learning for Image Captioning »
Bo Dai · Dahua Lin -
2013 Poster: Online Learning of Nonparametric Mixture Models via Sequential Variational Approximation »
Dahua Lin -
2012 Poster: Coupling Nonparametric Mixtures via Latent Dirichlet Processes »
Dahua Lin · John Fisher III -
2010 Oral: Construction of Dependent Dirichlet Processes based on Poisson Processes »
Dahua Lin · Eric Grimson · John Fisher III -
2010 Poster: Construction of Dependent Dirichlet Processes based on Poisson Processes »
Dahua Lin · Eric Grimson · John Fisher III