Timezone: »

Towards Theoretically Inspired Neural Initialization Optimization
Yibo Yang · Hong Wang · Haobo Yuan · Zhouchen Lin

Wed Nov 30 09:00 AM -- 11:00 AM (PST) @ Hall J #127

Automated machine learning has been widely explored to reduce human efforts in designing neural architectures and looking for proper hyperparameters. In the domain of neural initialization, however, similar automated techniques have rarely been studied. Most existing initialization methods are handcrafted and highly dependent on specific architectures. In this paper, we propose a differentiable quantity, named GradCoisne, with theoretical insights to evaluate the initial state of a neural network. Specifically, GradCosine is the cosine similarity of sample-wise gradients with respect to the initialized parameters. By analyzing the sample-wise optimization landscape, we show that both the training and test performance of a network can be improved by maximizing GradCosine under gradient norm constraint. Based on this observation, we further propose the neural initialization optimization (NIO) algorithm. Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost compared with the training time. With NIO, we improve the classification performance of a variety of neural architectures on CIFAR10, CIFAR-100, and ImageNet. Moreover, we find that our method can even help to train large vision Transformer architecture without warmup.

Author Information

Yibo Yang (Looking for research position. Email me!)


Hong Wang (School of Computer Science, Carnegie Mellon University)
Haobo Yuan (Wuhan University)
Zhouchen Lin (Peking University)

More from the Same Authors