Timezone: »
Self-training based semi-supervised learning algorithms have enabled the learning of highly accurate deep neural networks, using only a fraction of labeled data. However, the majority of work on self-training has focused on the objective of improving accuracy whereas practical machine learning systems can have complex goals (e.g. maximizing the minimum of recall across classes, etc.) that are non-decomposable in nature. In this work, we introduce the Cost-Sensitive Self-Training (CSST) framework which generalizes the self-training-based methods for optimizing non-decomposable metrics. We prove that our framework can better optimize the desired non-decomposable metric utilizing unlabeled data, under similar data distribution assumptions made for the analysis of self-training. Using the proposed CSST framework, we obtain practical self-training methods (for both vision and NLP tasks) for optimizing different non-decomposable metrics using deep neural networks. Our results demonstrate that CSST achieves an improvement over the state-of-the-art in majority of the cases across datasets and objectives.
Author Information
Harsh Rangwani (Indian Institute of Science)
shrinivas ramasubramanian (Indian Institute of Science)
Sho Takemori (Fujitsu Limited)
Kato Takashi (Fujitsu Limited)
Yuhei Umeda (Fujitsu)
Venkatesh Babu R (Indian Institute of Science)
More from the Same Authors
-
2022 : Learning an Invertible Output Mapping Can Mitigate Simplicity Bias in Neural Networks »
Sravanti Addepalli · Anshul Nasery · Venkatesh Babu R · Praneeth Netrapalli · Prateek Jain -
2022 Spotlight: Lightning Talks 6A-3 »
Junyu Xie · Chengliang Zhong · Ali Ayub · Sravanti Addepalli · Harsh Rangwani · Jiapeng Tang · Yuchen Rao · Zhiying Jiang · Yuqi Wang · Xingzhe He · Gene Chou · Ilya Chugunov · Samyak Jain · Yuntao Chen · Weidi Xie · Sumukh K Aithal · Carter Fendley · Lev Markhasin · Yiqin Dai · Peixing You · Bastian Wandt · Yinyu Nie · Helge Rhodin · Felix Heide · Ji Xin · Angela Dai · Andrew Zisserman · Bi Wang · Xiaoxue Chen · Mayank Mishra · ZHAO-XIANG ZHANG · Venkatesh Babu R · Justus Thies · Ming Li · Hao Zhao · Venkatesh Babu R · Jimmy Lin · Fuchun Sun · Matthias Niessner · Guyue Zhou · Xiaodong Mu · Chuang Gan · Wenbing Huang -
2022 Spotlight: Efficient and Effective Augmentation Strategy for Adversarial Training »
Sravanti Addepalli · Samyak Jain · Venkatesh Babu R -
2022 Spotlight: Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data »
Harsh Rangwani · Sumukh K Aithal · Mayank Mishra · Venkatesh Babu R -
2022 Spotlight: Lightning Talks 1B-3 »
Chaofei Wang · Qixun Wang · Jing Xu · Long-Kai Huang · Xi Weng · Fei Ye · Harsh Rangwani · shrinivas ramasubramanian · Yifei Wang · Qisen Yang · Xu Luo · Lei Huang · Adrian G. Bors · Ying Wei · Xinglin Pan · Sho Takemori · Hong Zhu · Rui Huang · Lei Zhao · Yisen Wang · Kato Takashi · Shiji Song · Yanan Li · Rao Anwer · Yuhei Umeda · Salman Khan · Gao Huang · Wenjie Pei · Fahad Shahbaz Khan · Venkatesh Babu R · Zenglin Xu -
2022 Spotlight: Cost-Sensitive Self-Training for Optimizing Non-Decomposable Metrics »
Harsh Rangwani · shrinivas ramasubramanian · Sho Takemori · Kato Takashi · Yuhei Umeda · Venkatesh Babu R -
2022 Poster: Efficient and Effective Augmentation Strategy for Adversarial Training »
Sravanti Addepalli · Samyak Jain · Venkatesh Babu R -
2022 Poster: Subsidiary Prototype Alignment for Universal Domain Adaptation »
Jogendra Nath Kundu · Suvaansh Bhambri · Akshay R Kulkarni · Hiran Sarkar · Varun Jampani · Venkatesh Babu R -
2022 Poster: Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data »
Harsh Rangwani · Sumukh K Aithal · Mayank Mishra · Venkatesh Babu R -
2021 Poster: Towards Efficient and Effective Adversarial Training »
Gaurang Sriramanan · Sravanti Addepalli · Arya Baburaj · Venkatesh Babu R -
2021 Poster: Non-local Latent Relation Distillation for Self-Adaptive 3D Human Pose Estimation »
Jogendra Nath Kundu · Siddharth Seth · Anirudh Jamkhandi · Pradyumna YM · Varun Jampani · Anirban Chakraborty · Venkatesh Babu R -
2021 Poster: Aligning Silhouette Topology for Self-Adaptive 3D Human Pose Recovery »
Ramesha Rakesh Mugaludi · Jogendra Nath Kundu · Varun Jampani · Venkatesh Babu R -
2020 : Closing Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Workshop: Topological Data Analysis and Beyond »
Bastian Rieck · Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Yuhei Umeda · Guy Wolf -
2020 : Opening Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Poster: Your Classifier can Secretly Suffice Multi-Source Domain Adaptation »
Naveen Venkat · Jogendra Nath Kundu · Durgesh Singh · Ambareesh Revanur · Venkatesh Babu R -
2020 Poster: Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses »
Gaurang Sriramanan · Sravanti Addepalli · Arya Baburaj · Venkatesh Babu R -
2020 Spotlight: Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses »
Gaurang Sriramanan · Sravanti Addepalli · Arya Baburaj · Venkatesh Babu R