Timezone: »
Poster
Large-Scale Differentiable Causal Discovery of Factor Graphs
Romain Lopez · Jan-Christian Huetter · Jonathan Pritchard · Aviv Regev
A common theme in causal inference is learning causal relationships between observed variables, also known as causal discovery. This is usually a daunting task, given the large number of candidate causal graphs and the combinatorial nature of the search space. Perhaps for this reason, most research has so far focused on relatively small causal graphs, with up to hundreds of nodes. However, recent advances in fields like biology enable generating experimental data sets with thousands of interventions followed by rich profiling of thousands of variables, raising the opportunity and urgent need for large causal graph models. Here, we introduce the notion of factor directed acyclic graphs ($f$-DAGs) as a way to restrict the search space to non-linear low-rank causal interaction models. Combining this novel structural assumption with recent advances that bridge the gap between causal discovery and continuous optimization, we achieve causal discovery on thousands of variables. Additionally, as a model for the impact of statistical noise on this estimation procedure, we study a model of edge perturbations of the $f$-DAG skeleton based on random graphs and quantify the effect of such perturbations on the $f$-DAG rank. This theoretical analysis suggests that the set of candidate $f$-DAGs is much smaller than the whole DAG space and thus may be more suitable as a search space in the high-dimensional regime where the underlying skeleton is hard to assess. We propose Differentiable Causal Discovery of Factor Graphs (DCD-FG), a scalable implementation of $f$-DAG constrained causal discovery for high-dimensional interventional data. DCD-FG uses a Gaussian non-linear low-rank structural equation model and shows significant improvements compared to state-of-the-art methods in both simulations as well as a recent large-scale single-cell RNA sequencing data set with hundreds of genetic interventions.
Author Information
Romain Lopez (Genentech & Stanford University)
Jan-Christian Huetter (Genentech)
Jonathan Pritchard
Aviv Regev (Genentech)
More from the Same Authors
-
2022 : EquiFold: Protein Structure Prediction with a Novel Coarse-Grained Structure Representation »
Jae Hyeon Lee · Payman Yadollahpour · Andrew Watkins · Nathan Frey · Andrew Leaver-Fay · Stephen Ra · Vladimir Gligorijevic · Kyunghyun Cho · Aviv Regev · Richard Bonneau -
2022 : Biological Cartography: Building and Benchmarking Representations of Life »
Safiye Celik · Jan-Christian Huetter · Sandra Melo · Nathan Lazar · Rahul Mohan · Conor Tillinghast · Tommaso Biancalani · Marta Fay · Berton Earnshaw · Imran Haque -
2022 : Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling »
Romain Lopez · NataĊĦa Tagasovska · Stephen Ra · Kyunghyun Cho · Jonathan Pritchard · Aviv Regev -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2022 : EquiFold: Protein Structure Prediction with a Novel Coarse-Grained Structure Representation »
Jae Hyeon Lee · Payman Yadollahpour · Andrew Watkins · Nathan Frey · Andrew Leaver-Fay · Stephen Ra · Vladimir Gligorijevic · Kyunghyun Cho · Aviv Regev · Richard Bonneau -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2021 : Invited Talk #7: Romain Lopez »
Romain Lopez -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2020 Poster: Decision-Making with Auto-Encoding Variational Bayes »
Romain Lopez · Pierre Boyeau · Nir Yosef · Michael Jordan · Jeffrey Regier -
2018 Poster: Information Constraints on Auto-Encoding Variational Bayes »
Romain Lopez · Jeffrey Regier · Michael Jordan · Nir Yosef