Timezone: »
Poster
Learning Chaotic Dynamics in Dissipative Systems
Zongyi Li · Miguel Liu-Schiaffini · Nikola Kovachki · Kamyar Azizzadenesheli · Burigede Liu · Kaushik Bhattacharya · Andrew Stuart · Anima Anandkumar
Chaotic systems are notoriously challenging to predict because of their sensitivity to perturbations and errors due to time stepping. Despite this unpredictable behavior, for many dissipative systems the statistics of the long term trajectories are governed by an invariant measure supported on a set, known as the global attractor; for many problems this set is finite dimensional, even if the state space is infinite dimensional. For Markovian systems, the statistical properties of long-term trajectories are uniquely determined by the solution operator that maps the evolution of the system over arbitrary positive time increments. In this work, we propose a machine learning framework to learn the underlying solution operator for dissipative chaotic systems, showing that the resulting learned operator accurately captures short-time trajectories and long-time statistical behavior. Using this framework, we are able to predict various statistics of the invariant measure for the turbulent Kolmogorov Flow dynamics with Reynolds numbers up to $5000$.
Author Information
Zongyi Li (Washington University in St. Louis)
Miguel Liu-Schiaffini (California Institute of Technology)
Nikola Kovachki (NVIDIA)
Kamyar Azizzadenesheli (Purdue University)
Burigede Liu (University of Cambridge)
Kaushik Bhattacharya (Caltech)
Andrew Stuart (California Institute of Technology)
Anima Anandkumar (NVIDIA / Caltech)
More from the Same Authors
-
2022 Poster: MinVIS: A Minimal Video Instance Segmentation Framework without Video-based Training »
De-An Huang · Zhiding Yu · Anima Anandkumar -
2022 : Can you label less by using out-of-domain data? Active & Transfer Learning with Few-shot Instructions »
Rafal Kocielnik · Sara Kangaslahti · Shrimai Prabhumoye · Meena Hari · Michael Alvarez · Anima Anandkumar -
2022 : ZerO Initialization: Initializing Neural Networks with only Zeros and Ones »
Jiawei Zhao · Florian Schaefer · Anima Anandkumar -
2022 : Retrieval-based Controllable Molecule Generation »
Jack Wang · Weili Nie · Zhuoran Qiao · Chaowei Xiao · Richard Baraniuk · Anima Anandkumar -
2022 : Towards Neural Variational Monte Carlo That Scales Linearly with System Size »
Or Sharir · Garnet Chan · Anima Anandkumar -
2022 : Incremental Fourier Neural Operator »
Jiawei Zhao · Robert Joseph George · Yifei Zhang · Zongyi Li · Anima Anandkumar -
2022 : FALCON: Fourier Adaptive Learning and Control for Disturbance Rejection Under Extreme Turbulence »
Sahin Lale · Peter Renn · Kamyar Azizzadenesheli · Babak Hassibi · Morteza Gharib · Anima Anandkumar -
2022 : Fourier Continuation for Exact Derivative Computation in Physics-Informed Neural Operators »
Haydn Maust · Zongyi Li · Yixuan Wang · Anima Anandkumar -
2022 : MoleculeCLIP: Learning Transferable Molecule Multi-Modality Models via Natural Language »
Shengchao Liu · Weili Nie · Chengpeng Wang · Jiarui Lu · Zhuoran Qiao · Ling Liu · Jian Tang · Anima Anandkumar · Chaowei Xiao -
2022 : Fourier Neural Operator for Plasma Modelling »
Vignesh Gopakumar · Stanislas Pamela · Lorenzo Zanisi · Zongyi Li · Anima Anandkumar -
2022 : VIMA: General Robot Manipulation with Multimodal Prompts »
Yunfan Jiang · Agrim Gupta · Zichen Zhang · Guanzhi Wang · Yongqiang Dou · Yanjun Chen · Fei-Fei Li · Anima Anandkumar · Yuke Zhu · Linxi Fan -
2022 : Fast Sampling of Diffusion Models via Operator Learning »
Hongkai Zheng · Weili Nie · Arash Vahdat · Kamyar Azizzadenesheli · Anima Anandkumar -
2022 : DensePure: Understanding Diffusion Models towards Adversarial Robustness »
Zhongzhu Chen · Kun Jin · Jiongxiao Wang · Weili Nie · Mingyan Liu · Anima Anandkumar · Bo Li · Dawn Song -
2022 : HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer Compression »
Jiaqi Gu · Ben Keller · Jean Kossaifi · Anima Anandkumar · Brucek Khailany · David Pan -
2022 : Contributed Talk: DensePure: Understanding Diffusion Models towards Adversarial Robustness »
Zhongzhu Chen · Kun Jin · Jiongxiao Wang · Weili Nie · Mingyan Liu · Anima Anandkumar · Bo Li · Dawn Song -
2022 Workshop: Trustworthy and Socially Responsible Machine Learning »
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li -
2022 : HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer Compression »
Jiaqi Gu · Ben Keller · Jean Kossaifi · Anima Anandkumar · Brucek Khailany · David Pan -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models »
Manli Shu · Weili Nie · De-An Huang · Zhiding Yu · Tom Goldstein · Anima Anandkumar · Chaowei Xiao -
2022 Poster: PeRFception: Perception using Radiance Fields »
Yoonwoo Jeong · Seungjoo Shin · Junha Lee · Chris Choy · Anima Anandkumar · Minsu Cho · Jaesik Park -
2022 Poster: Finite-Time Regret of Thompson Sampling Algorithms for Exponential Family Multi-Armed Bandits »
Tianyuan Jin · Pan Xu · Xiaokui Xiao · Anima Anandkumar -
2022 Poster: Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models »
Boxin Wang · Wei Ping · Chaowei Xiao · Peng Xu · Mostofa Patwary · Mohammad Shoeybi · Bo Li · Anima Anandkumar · Bryan Catanzaro -
2022 Poster: Pre-Trained Language Models for Interactive Decision-Making »
Shuang Li · Xavier Puig · Chris Paxton · Yilun Du · Clinton Wang · Linxi Fan · Tao Chen · De-An Huang · Ekin Akyürek · Anima Anandkumar · Jacob Andreas · Igor Mordatch · Antonio Torralba · Yuke Zhu -
2022 Poster: MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge »
Linxi Fan · Guanzhi Wang · Yunfan Jiang · Ajay Mandlekar · Yuncong Yang · Haoyi Zhu · Andrew Tang · De-An Huang · Yuke Zhu · Anima Anandkumar -
2021 Poster: Meta-Adaptive Nonlinear Control: Theory and Algorithms »
Guanya Shi · Kamyar Azizzadenesheli · Michael O'Connell · Soon-Jo Chung · Yisong Yue -
2021 Poster: Off-Policy Risk Assessment in Contextual Bandits »
Audrey Huang · Liu Leqi · Zachary Lipton · Kamyar Azizzadenesheli -
2020 Poster: Multipole Graph Neural Operator for Parametric Partial Differential Equations »
Zongyi Li · Nikola Kovachki · Kamyar Azizzadenesheli · Burigede Liu · Andrew Stuart · Kaushik Bhattacharya · Anima Anandkumar -
2016 : Anima Anandkumar »
Anima Anandkumar -
2016 Workshop: Learning with Tensors: Why Now and How? »
Anima Anandkumar · Rong Ge · Yan Liu · Maximilian Nickel · Qi (Rose) Yu -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Poster: Online and Differentially-Private Tensor Decomposition »
Yining Wang · Anima Anandkumar -
2015 : Opening and Overview »
Anima Anandkumar -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Poster: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Spotlight: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2014 Poster: Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Matrix Decomposition »
Hanie Sedghi · Anima Anandkumar · Edmond A Jonckheere -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Poster: When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity »
Anima Anandkumar · Daniel Hsu · Majid Janzamin · Sham M Kakade -
2012 Poster: Learning Mixtures of Tree Graphical Models »
Anima Anandkumar · Daniel Hsu · Furong Huang · Sham M Kakade -
2012 Poster: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Spotlight: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Poster: Latent Graphical Model Selection: Efficient Methods for Locally Tree-like Graphs »
Anima Anandkumar · Ragupathyraj Valluvan -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang