Timezone: »
Programmatic Weak Supervision (PWS) aggregates the source votes of multiple weak supervision sources into probabilistic training labels, which are in turn used to train an end model. With its increasing popularity, it is critical to have some tool for users to understand the influence of each component (\eg, the source vote or training data) in the pipeline and interpret the end model behavior. To achieve this, we build on Influence Function (IF) and propose source-aware IF, which leverages the generation process of the probabilistic labels to decompose the end model's training objective and then calculate the influence associated with each (data, source, class) tuple. These primitive influence score can then be used to estimate the influence of individual component of PWS, such as source vote, supervision source, and training data. On datasets of diverse domains, we demonstrate multiple use cases: (1) interpreting incorrect predictions from multiple angles that reveals insights for debugging the PWS pipeline, (2) identifying mislabeling of sources with a gain of 9\%-37\% over baselines, and (3) improving the end model's generalization performance by removing harmful components in the training objective (13\%-24\% better than ordinary IF).
Author Information
Jieyu Zhang (Department of Computer Science, University of Washington)
Haonan Wang (national university of singaore, National University of Singapore)
Cheng-Yu Hsieh (University of Washington)
Alexander Ratner (Stanford University)
More from the Same Authors
-
2021 : WRENCH: A Comprehensive Benchmark for Weak Supervision »
Jieyu Zhang · Yue Yu · · Yujing Wang · Yaming Yang · Mao Yang · Alexander Ratner -
2023 Poster: Characterizing the Impacts of Semi-supervised Learning for Weak Supervision »
Jeffrey Li · Jieyu Zhang · Ludwig Schmidt · Alexander Ratner -
2023 Poster: Model-enhanced Vector Index »
Hailin Zhang · Yujing Wang · Qi Chen · Ruiheng Chang · Ting Zhang · Ziming Miao · Yingyan Hou · Yang Ding · Xupeng Miao · Haonan Wang · Bochen Pang · Yuefeng Zhan · Hao Sun · Weiwei Deng · Qi Zhang · Fan Yang · Xing Xie · Mao Yang · Bin CUI -
2023 Poster: On the Trade-off of Intra-/Inter-class Diversity for Supervised Pre-training »
Jieyu Zhang · Bohan Wang · Zhengyu Hu · Pang Wei Koh · Alexander Ratner -
2023 Poster: Complexity Matters: Rethinking the Latent Space for Generative Modeling »
Tianyang Hu · Fei Chen · Haonan Wang · Jiawei Li · Wenjia Wang · Jiacheng Sun · Zhenguo Li -
2023 Poster: DataComp: In search of the next generation of multimodal datasets »
Samir Yitzhak Gadre · Gabriel Ilharco · Alex Fang · Jonathan Hayase · Georgios Smyrnis · Thao Nguyen · Ryan Marten · Mitchell Wortsman · Dhruba Ghosh · Jieyu Zhang · Eyal Orgad · Rahim Entezari · Giannis Daras · Sarah Pratt · Vivek Ramanujan · Yonatan Bitton · Kalyani Marathe · Stephen Mussmann · Richard Vencu · Mehdi Cherti · Ranjay Krishna · Pang Wei Koh · Olga Saukh · Alexander Ratner · Shuran Song · Hannaneh Hajishirzi · Ali Farhadi · Romain Beaumont · Sewoong Oh · Alex Dimakis · Jenia Jitsev · Yair Carmon · Vaishaal Shankar · Ludwig Schmidt -
2023 Poster: Uncovering Neural Scaling Law in Molecular Representation Learning »
Dingshuo Chen · Yanqiao Zhu · Jieyu Zhang · Yuanqi Du · Zhixun Li · Qiang Liu · Shu Wu · Liang Wang -
2023 Poster: SugarCrepe: Fixing Hackable Benchmarks for Vision-Language Compositionality »
Cheng-Yu Hsieh · Jieyu Zhang · Zixian Ma · Aniruddha Kembhavi · Ranjay Krishna -
2023 Poster: Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias »
Yue Yu · Yuchen Zhuang · Jieyu Zhang · Yu Meng · Alexander Ratner · Ranjay Krishna · Jiaming Shen · Chao Zhang -
2023 Oral: DataComp: In search of the next generation of multimodal datasets »
Samir Yitzhak Gadre · Gabriel Ilharco · Alex Fang · Jonathan Hayase · Georgios Smyrnis · Thao Nguyen · Ryan Marten · Mitchell Wortsman · Dhruba Ghosh · Jieyu Zhang · Eyal Orgad · Rahim Entezari · Giannis Daras · Sarah Pratt · Vivek Ramanujan · Yonatan Bitton · Kalyani Marathe · Stephen Mussmann · Richard Vencu · Mehdi Cherti · Ranjay Krishna · Pang Wei Koh · Olga Saukh · Alexander Ratner · Shuran Song · Hannaneh Hajishirzi · Ali Farhadi · Romain Beaumont · Sewoong Oh · Alex Dimakis · Jenia Jitsev · Yair Carmon · Vaishaal Shankar · Ludwig Schmidt -
2022 : Panel »
Mayee Chen · Alexander Ratner · Robert Nowak · Cody Coleman · Ramya Korlakai Vinayak -
2022 Poster: A Neural Corpus Indexer for Document Retrieval »
Yujing Wang · Yingyan Hou · Haonan Wang · Ziming Miao · Shibin Wu · Hao Sun · Qi Chen · Yuqing Xia · Chengmin Chi · Guoshuai Zhao · Zheng Liu · Xing Xie · Hao Sun · Weiwei Deng · Qi Zhang · Mao Yang -
2022 Poster: Deep Active Learning by Leveraging Training Dynamics »
Haonan Wang · Wei Huang · Ziwei Wu · Hanghang Tong · Andrew J Margenot · Jingrui He -
2021 : AI workloads inside databases »
Guy Van den Broeck · Alexander Ratner · Benjamin Moseley · Konstantinos Karanasos · Parisa Kordjamshidi · Molham Aref · Arun Kumar -
2021 Poster: Optimizing Information-theoretical Generalization Bound via Anisotropic Noise of SGLD »
Bohan Wang · Huishuai Zhang · Jieyu Zhang · Qi Meng · Wei Chen · Tie-Yan Liu -
2021 : WRENCH: A Comprehensive Benchmark for Weak Supervision »
Jieyu Zhang · Yue Yu · · Yujing Wang · Yaming Yang · Mao Yang · Alexander Ratner -
2020 : Q & A and Panel Session with Dan Weld, Kristen Grauman, Scott Yih, Emma Brunskill, and Alex Ratner »
Kristen Grauman · Wen-tau Yih · Alexander Ratner · Emma Brunskill · Douwe Kiela · Daniel S. Weld -
2019 Poster: Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices »
Vincent Chen · Sen Wu · Alexander Ratner · Jen Weng · Christopher Ré -
2017 Workshop: Learning with Limited Labeled Data: Weak Supervision and Beyond »
Isabelle Augenstein · Stephen Bach · Eugene Belilovsky · Matthew Blaschko · Christoph Lampert · Edouard Oyallon · Emmanouil Antonios Platanios · Alexander Ratner · Christopher Ré -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: Learning to Compose Domain-Specific Transformations for Data Augmentation »
Alexander Ratner · Henry Ehrenberg · Zeshan Hussain · Jared Dunnmon · Christopher Ré -
2016 Poster: Data Programming: Creating Large Training Sets, Quickly »
Alexander Ratner · Christopher M De Sa · Sen Wu · Daniel Selsam · Christopher Ré