Timezone: »
In this paper, we tackle the task of scene-aware 3D human motion forecasting, which consists of predicting future human poses given a 3D scene and a past human motion. A key challenge of this task is to ensure consistency between the human and the scene, accounting for human-scene interactions. Previous attempts to do so model such interactions only implicitly, and thus tend to produce artifacts such as ``ghost motion" because of the lack of explicit constraints between the local poses and the global motion. Here, by contrast, we propose to explicitly model the human-scene contacts. To this end, we introduce distance-based contact maps that capture the contact relationships between every joint and every 3D scene point at each time instant. We then develop a two-stage pipeline that first predicts the future contact maps from the past ones and the scene point cloud, and then forecasts the future human poses by conditioning them on the predicted contact maps. During training, we explicitly encourage consistency between the global motion and the local poses via a prior defined using the contact maps and future poses. Our approach outperforms the state-of-the-art human motion forecasting and human synthesis methods on both synthetic and real datasets. Our code is available at https://github.com/wei-mao-2019/ContAwareMotionPred.
Author Information
Wei Mao (Australian National University)

Wei is a PhD student at Australian National University (ANU). I work on computer vision and machine learning advised by Dr. Miaomiao Liu. I also work closely with Dr. Mathieu Salzmann.
miaomiao Liu (Australian National University)
Richard I Hartley (Australian National University)
Mathieu Salzmann (EPFL)
More from the Same Authors
-
2021 : SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation »
Robin Chan · Krzysztof Lis · Svenja Uhlemeyer · Hermann Blum · Sina Honari · Roland Siegwart · Pascal Fua · Mathieu Salzmann · Matthias Rottmann -
2021 : Short-term Solar Irradiance Prediction from Sky Images »
Hoang Chuong Nguyen · miaomiao Liu -
2023 Poster: SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation »
Haobo Jiang · Mathieu Salzmann · Zheng Dang · Jin Xie · Jian Yang -
2023 Poster: DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via Physics Simulation »
Rong Wang · Wei Mao · Hongdong Li -
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · Yongwei Chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: Contact-aware Human Motion Forecasting »
Wei Mao · miaomiao Liu · Richard I Hartley · Mathieu Salzmann -
2022 Poster: Robust Binary Models by Pruning Randomly-initialized Networks »
Chen Liu · Ziqi Zhao · Sabine Süsstrunk · Mathieu Salzmann -
2021 Poster: Distilling Image Classifiers in Object Detectors »
Shuxuan Guo · Jose M. Alvarez · Mathieu Salzmann -
2021 Poster: Learning Transferable Adversarial Perturbations »
Krishna kanth Nakka · Mathieu Salzmann -
2020 Poster: Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks »
Amir Rahimi · Amirreza Shaban · Ching-An Cheng · Richard I Hartley · Byron Boots -
2020 Poster: On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them »
Chen Liu · Mathieu Salzmann · Tao Lin · Ryota Tomioka · Sabine Süsstrunk -
2020 Poster: ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks »
Shuxuan Guo · Jose M. Alvarez · Mathieu Salzmann -
2020 Spotlight: ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks »
Shuxuan Guo · Jose M. Alvarez · Mathieu Salzmann -
2019 Poster: Backpropagation-Friendly Eigendecomposition »
Wei Wang · Zheng Dang · Yinlin Hu · Pascal Fua · Mathieu Salzmann -
2017 Poster: Compression-aware Training of Deep Networks »
Jose Alvarez · Mathieu Salzmann -
2017 Poster: Deep Subspace Clustering Networks »
Pan Ji · Tong Zhang · Hongdong Li · Mathieu Salzmann · Ian Reid -
2016 Poster: Learning the Number of Neurons in Deep Networks »
Jose M. Alvarez · Mathieu Salzmann -
2014 Workshop: Riemannian geometry in machine learning, statistics and computer vision »
Minh Ha Quang · Vikas Sindhwani · Vittorio Murino · Michael Betancourt · Tom Fletcher · Richard I Hartley · Anuj Srivastava · Bart Vandereycken