Timezone: »
Deep Reinforcement Learning has demonstrated the potential of neural networks tuned with gradient descent for solving complex tasks in well-delimited environments. However, these neural systems are slow learners producing specialized agents with no mechanism to continue learning beyond their training curriculum. On the contrary, biological synaptic plasticity is persistent and manifold, and has been hypothesized to play a key role in executive functions such as working memory and cognitive flexibility, potentially supporting more efficient and generic learning abilities. Inspired by this, we propose to build networks with dynamic weights, able to continually perform self-reflexive modification as a function of their current synaptic state and action-reward feedback, rather than a fixed network configuration. The resulting model, MetODS (for Meta-Optimized Dynamical Synapses) is a broadly applicable meta-reinforcement learning system able to learn efficient and powerful control rules in the agent policy space. A single layer with dynamic synapses can perform one-shot learning, generalize navigation principles to unseen environments and demonstrates a strong ability to learn adaptive motor policies, comparing favorably with previous meta-reinforcement learning approaches.
Author Information
Mathieu Chalvidal (Brown University)
Thomas Serre (Brown University)
Rufin VanRullen (CNRS - CerCo (Toulouse))
More from the Same Authors
-
2022 : The emergence of visual simulation in task-optimized recurrent neural networks »
Alekh Karkada Ashok · Lakshmi Narasimhan Govindarajan · Drew Linsley · David Sheinberg · Thomas Serre -
2022 Poster: A Benchmark for Compositional Visual Reasoning »
Aimen Zerroug · Mohit Vaishnav · Julien Colin · Sebastian Musslick · Thomas Serre -
2022 Poster: Diversity vs. Recognizability: Human-like generalization in one-shot generative models »
Victor Boutin · Lakshya Singhal · Xavier Thomas · Thomas Serre -
2022 Poster: Harmonizing the object recognition strategies of deep neural networks with humans »
Thomas FEL · Ivan F Rodriguez Rodriguez · Drew Linsley · Thomas Serre -
2022 Poster: What I Cannot Predict, I Do Not Understand: A Human-Centered Evaluation Framework for Explainability Methods »
Julien Colin · Thomas FEL · Remi Cadene · Thomas Serre -
2021 : Multimodal neural networks better explain multivoxel patterns in the hippocampus »
Bhavin Choksi · Milad Mozafari · Rufin VanRullen · Leila Reddy -
2021 : Multimodal neural networks better explain multivoxel patterns in the hippocampus »
Bhavin Choksi · Milad Mozafari · Rufin VanRullen · Leila Reddy -
2021 Poster: Tracking Without Re-recognition in Humans and Machines »
Drew Linsley · Girik Malik · Junkyung Kim · Lakshmi Narasimhan Govindarajan · Ennio Mingolla · Thomas Serre -
2021 Poster: Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis »
Thomas FEL · Remi Cadene · Mathieu Chalvidal · Matthieu Cord · David Vigouroux · Thomas Serre -
2021 Poster: Predify: Augmenting deep neural networks with brain-inspired predictive coding dynamics »
Bhavin Choksi · Milad Mozafari · Callum Biggs O'May · B. ADOR · Andrea Alamia · Rufin VanRullen -
2020 Poster: Stable and expressive recurrent vision models »
Drew Linsley · Alekh Karkada Ashok · Lakshmi Narasimhan Govindarajan · Rex Liu · Thomas Serre -
2020 Spotlight: Stable and expressive recurrent vision models »
Drew Linsley · Alekh Karkada Ashok · Lakshmi Narasimhan Govindarajan · Rex Liu · Thomas Serre -
2020 Session: Orals & Spotlights Track 29: Neuroscience »
Aasa Feragen · Thomas Serre -
2018 Poster: Learning long-range spatial dependencies with horizontal gated recurrent units »
Drew Linsley · Junkyung Kim · Vijay Veerabadran · Charles Windolf · Thomas Serre -
2016 Poster: How Deep is the Feature Analysis underlying Rapid Visual Categorization? »
Sven Eberhardt · Jonah G Cader · Thomas Serre -
2013 Poster: Neural representation of action sequences: how far can a simple snippet-matching model take us? »
Cheston Tan · Jedediah M Singer · Thomas Serre · David Sheinberg · Tomaso Poggio