Timezone: »
Multi-agent reinforcement learning has drawn increasing attention in practice, e.g., robotics and automatic driving, as it can explore optimal policies using samples generated by interacting with the environment. However, high reward uncertainty still remains a problem when we want to train a satisfactory model, because obtaining high-quality reward feedback is usually expensive and even infeasible. To handle this issue, previous methods mainly focus on passive reward correction. At the same time, recent active reward estimation methods have proven to be a recipe for reducing the effect of reward uncertainty. In this paper, we propose a novel Distributional Reward Estimation framework for effective Multi-Agent Reinforcement Learning (DRE-MARL). Our main idea is to design the multi-action-branch reward estimation and policy-weighted reward aggregation for stabilized training. Specifically, we design the multi-action-branch reward estimation to model reward distributions on all action branches. Then we utilize reward aggregation to obtain stable updating signals during training. Our intuition is that consideration of all possible consequences of actions could be useful for learning policies. The superiority of the DRE-MARL is demonstrated using benchmark multi-agent scenarios, compared with the SOTA baselines in terms of both effectiveness and robustness.
Author Information
Jifeng Hu (Jilin University)
Yanchao Sun (University of Maryland, College Park)
Hechang Chen (Jilin University)
Sili Huang (Jilin University)
haiyin piao (Northwestern Polytechnical University)
Yi Chang (Jilin University)
Lichao Sun (Lehigh University)
More from the Same Authors
-
2021 Spotlight: Subgraph Federated Learning with Missing Neighbor Generation »
Ke ZHANG · Carl Yang · Xiaoxiao Li · Lichao Sun · Siu Ming Yiu -
2021 : Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL »
Yanchao Sun · Ruijie Zheng · Yongyuan Liang · Furong Huang -
2021 : Efficiently Improving the Robustness of RL Agents against Strongest Adversaries »
Yongyuan Liang · Yanchao Sun · Ruijie Zheng · Furong Huang -
2021 : Transfer RL across Observation Feature Spaces via Model-Based Regularization »
Yanchao Sun · Ruijie Zheng · Xiyao Wang · Andrew Cohen · Furong Huang -
2021 : Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL »
Yanchao Sun · Ruijie Zheng · Yongyuan Liang · Furong Huang -
2022 : SMART: Self-supervised Multi-task pretrAining with contRol Transformers »
Yanchao Sun · shuang ma · Ratnesh Madaan · Rogerio Bonatti · Furong Huang · Ashish Kapoor -
2022 Spotlight: Adversarial Auto-Augment with Label Preservation: A Representation Learning Principle Guided Approach »
Kaiwen Yang · Yanchao Sun · Jiahao Su · Fengxiang He · Xinmei Tian · Furong Huang · Tianyi Zhou · Dacheng Tao -
2022 Poster: BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs »
Kay Liu · Yingtong Dou · Yue Zhao · Xueying Ding · Xiyang Hu · Ruitong Zhang · Kaize Ding · Canyu Chen · Hao Peng · Kai Shu · Lichao Sun · Jundong Li · George H Chen · Zhihao Jia · Philip S Yu -
2022 Poster: Efficient Adversarial Training without Attacking: Worst-Case-Aware Robust Reinforcement Learning »
Yongyuan Liang · Yanchao Sun · Ruijie Zheng · Furong Huang -
2022 Poster: Adversarial Auto-Augment with Label Preservation: A Representation Learning Principle Guided Approach »
Kaiwen Yang · Yanchao Sun · Jiahao Su · Fengxiang He · Xinmei Tian · Furong Huang · Tianyi Zhou · Dacheng Tao -
2021 : Who Is the Strongest Enemy? Towards Optimal and Efficient Evasion Attacks in Deep RL »
Yanchao Sun · Ruijie Zheng · Yongyuan Liang · Furong Huang -
2021 : Efficiently Improving the Robustness of RL Agents against Strongest Adversaries »
Yongyuan Liang · Yanchao Sun · Ruijie Zheng · Furong Huang -
2021 Poster: Subgraph Federated Learning with Missing Neighbor Generation »
Ke ZHANG · Carl Yang · Xiaoxiao Li · Lichao Sun · Siu Ming Yiu -
2021 Poster: Coordinated Proximal Policy Optimization »
Zifan Wu · Chao Yu · Deheng Ye · Junge Zhang · haiyin piao · Hankz Hankui Zhuo -
2020 Poster: MESA: Boost Ensemble Imbalanced Learning with MEta-SAmpler »
Zhining Liu · Pengfei Wei · Jing Jiang · Wei Cao · Jiang Bian · Yi Chang