Timezone: »
Fine-grained categories that largely share the same set of parts cannot be discriminated based on part information alone, as they mostly differ in the way the local parts relate to the overall global structure of the object. We propose Relational Proxies, a novel approach that leverages the relational information between the global and local views of an object for encoding its semantic label. Starting with a rigorous formalization of the notion of distinguishability between fine-grained categories, we prove the necessary and sufficient conditions that a model must satisfy in order to learn the underlying decision boundaries in the fine-grained setting. We design Relational Proxies based on our theoretical findings and evaluate it on seven challenging fine-grained benchmark datasets and achieve state-of-the-art results on all of them, surpassing the performance of all existing works with a margin exceeding 4% in some cases. We also experimentally validate our theory on fine-grained distinguishability and obtain consistent results across multiple benchmarks. Implementation is available at https://github.com/abhrac/relational-proxies.
Author Information
ABHRA CHAUDHURI (University of Exeter)
Massimiliano Mancini (University of Tuebingen)
Zeynep Akata (University of Tübingen)
Anjan Dutta (University of Surrey)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Relational Proxies: Emergent Relationships as Fine-Grained Discriminators »
Fri. Dec 9th 01:00 -- 03:00 AM Room
More from the Same Authors
-
2021 : Revisiting Visual Product for Compositional Zero-Shot Learning »
Shyamgopal Karthik · Massimiliano Mancini · Zeynep Akata -
2022 : PlanT: Explainable Planning Transformers via Object-Level Representations »
Katrin Renz · Kashyap Chitta · Otniel-Bogdan Mercea · A. Sophia Koepke · Zeynep Akata · Andreas Geiger -
2022 : Momentum-based Weight Interpolation of Strong Zero-Shot Models for Continual Learning »
Zafir Stojanovski · Karsten Roth · Zeynep Akata -
2022 : Momentum-based Weight Interpolation of Strong Zero-Shot Models for Continual Learning »
Zafir Stojanovski · Karsten Roth · Zeynep Akata -
2022 Spotlight: Lightning Talks 6A-4 »
Xiu-Shen Wei · Konstantina Dritsa · Guillaume Huguet · ABHRA CHAUDHURI · Zhenbin Wang · Kevin Qinghong Lin · Yutong Chen · Jianan Zhou · Yongsen Mao · Junwei Liang · Jinpeng Wang · Mao Ye · Yiming Zhang · Aikaterini Thoma · H.-Y. Xu · Daniel Sumner Magruder · Enwei Zhang · Jianing Zhu · Ronglai Zuo · Massimiliano Mancini · Hanxiao Jiang · Jun Zhang · Fangyun Wei · Faen Zhang · Ioannis Pavlopoulos · Zeynep Akata · Xiatian Zhu · Jingfeng ZHANG · Alexander Tong · Mattia Soldan · Chunhua Shen · Yuxin Peng · Liuhan Peng · Michael Wray · Tongliang Liu · Anjan Dutta · Yu Wu · Oluwadamilola Fasina · Panos Louridas · Angel Chang · Manik Kuchroo · Manolis Savva · Shujie LIU · Wei Zhou · Rui Yan · Gang Niu · Liang Tian · Bo Han · Eric Z. XU · Guy Wolf · Yingying Zhu · Brian Mak · Difei Gao · Masashi Sugiyama · Smita Krishnaswamy · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2021 Workshop: ImageNet: Past, Present, and Future »
Zeynep Akata · Lucas Beyer · Sanghyuk Chun · A. Sophia Koepke · Diane Larlus · Seong Joon Oh · Rafael Rezende · Sangdoo Yun · Xiaohua Zhai -
2020 Poster: Attribute Prototype Network for Zero-Shot Learning »
Wenjia Xu · Yongqin Xian · Jiuniu Wang · Bernt Schiele · Zeynep Akata