Timezone: »
Developing deep generative models has been an emerging field due to the ability to model and generate complex data for various purposes, such as image synthesis and molecular design. However, the advance of deep generative models is limited by the challenges to generate objects that possess multiple desired properties because: 1) the existence of complex correlation among real-world properties is common but hard to identify; 2) controlling individual property enforces an implicit partially control of its correlated properties, which is difficult to model; 3) controlling multiple properties under variour manners simultaneously is hard and underexplored. We address these challenges by proposing a novel deep generative framework that recovers semantics and correlation of properties through disentangled latent vectors. The correlation is handled via an explainable mask pooling layer, and properties are precisely retained by the generated objects via the mutual dependence between latent vectors and properties. Our generative model preserves properties of interest while handles correlation and conflicts of properties under a multi-objective optimization framework. The experiments demonstrate our model's superior performance in generating objects with desired properties.
Author Information
Shiyu Wang (Emory University)
Shiyu is currently a PhD candidate in Biostatistics at the Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University. He is honored to be advised by Dr. Liang Zhao and Dr. Zhaohui (Steve) Qin, working on deep generative models and graph neural networks.
Xiaojie Guo (JD.COM Silicon Valley Research Center)
Xuanyang Lin (Emory University)
Bo Pan (Emory University)
Yuanqi Du (Cornell University)
Yinkai Wang (Tufts University)
Yanfang Ye (University of Notre Dame)
Ashley Petersen (Villanova University)
Austin Leitgeb
Saleh Alkhalifa (Recursiv LLC)
Kevin Minbiole (Villanova University)
William M. Wuest
Amarda Shehu (George Mason University)

Dr. Amarda Shehu is a Professor in the Department of Computer Science in the College of Engineering and Computing at George Mason University, where she is also Associate Vice President of Research for the Institute of Digital InnovAtion. Shehu obtained her Ph.D. from Rice University in 2008, where she was also an NIH predoctoral fellow in the Nanobiology Program and was dually trained in AI and Molecular Biophysics. Shehu's research is at the intersection of AI/ML and scientific enquiry across disciplines. In particular, her laboratory has made significant contributions to uncovering the relationship between macromolecular sequence, structure, dynamics, and function. Shehu has published over 160 technical papers with postdoctoral, graduate, undergraduate, and high-school students. She is a 2022 Fellow of the American Institute for Medical and Biological Engineering (AIMBE) and has received several awards, including the 2022 Outstanding Faculty Award from the State Council of Higher Education for Virginia, the 2021 Beck Family Presidential Medal for Faculty Excellence in Research and Scholarship, the 2018 Mason University Teaching Excellence Award, the 2014 Mason Emerging Researcher/Scholar/Creator Award, the 2013 Mason OSCAR Undergraduate Mentor Excellence Award, and the 2012 National Science Foundation (NSF) CAREER Award. Her research is regularly supported by various NSF programs, the Department of Defense, as well as state and private research awards. Shehu is currently the chair of the steering committee of the ACM/IEEE Journal on Transactions in Bioinformatics and Computational Biology, where she is also an associate editor. Shehu served as an NSF Program Director in the Information and Intelligent Systems Division of the Computer and Information Science and Engineering Directorate during 2019-2022. She was also an Inaugural Founding Co-Director of George Mason University’s Transdisciplinary Center for Advancing Human-Machine Partnerships.
Liang Zhao (Emory University)
More from the Same Authors
-
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Community-based Layerwise Distributed Training of Graph Convolutional Networks »
Hongyi Li · Junxiang Wang · Yongchao Wang · Yue Cheng · Liang Zhao -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2021 : GraphGT: Machine Learning Datasets for Graph Generation and Transformation »
Yuanqi Du · Shiyu Wang · Xiaojie Guo · Hengning Cao · Shujie Hu · Junji Jiang · Aishwarya Varala · Abhinav Angirekula · Liang Zhao -
2021 : Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning »
Ziming Liu · Yuanqi Du · Yunyue Chen · Max Tegmark -
2021 : Learning Disentangled Representation for Spatiotemporal Graph Generation »
Yuanqi Du · Xiaojie Guo · Hengning Cao · Yanfang (Fa Ye · Liang Zhao -
2022 Poster: Audio-Driven Co-Speech Gesture Video Generation »
Xian Liu · Qianyi Wu · Hang Zhou · Yuanqi Du · Wayne Wu · Dahua Lin · Ziwei Liu -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 : PIPS: Path Integral Stochastic Optimal Control for Path Sampling in Molecular Dynamics »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2022 : Structural Causal Model for Molecular Dynamics Simulation »
Qi Liu · Yuanqi Du · Fan Feng · Qiwei Ye · Jie Fu -
2022 : Xtal2DoS: Attention-based Crystal to Sequence Learning for Density of States Prediction »
Junwen Bai · Yuanqi Du · Yingheng Wang · Shufeng Kong · John Gregoire · Carla Gomes -
2022 : ChemSpacE: Interpretable and Interactive Chemical Space Exploration »
Yuanqi Du · Xian Liu · Nilay Shah · Shengchao Liu · Jieyu Zhang · Bolei Zhou -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Improving Molecular Pretraining with Complementary Featurizations »
Yanqiao Zhu · Dingshuo Chen · Yuanqi Du · Yingze Wang · Qiang Liu · Shu Wu -
2022 : Graph Contrastive Learning with Cross-view Reconstruction »
Qianlong Wen · Zhongyu Ouyang · Chunhui Zhang · Yiyue Qian · Yanfang Ye · Chuxu Zhang -
2022 : Contrastive Graph Few-Shot Learning »
Chunhui Zhang · Hongfu Liu · Jundong Li · Yanfang Ye · Chuxu Zhang -
2022 : Diving into Unified Data-Model Sparsity for Class-Imbalanced Graph Representation Learning »
Chunhui Zhang · Chao Huang · Yijun Tian · Qianlong Wen · Zhongyu Ouyang · Youhuan Li · Yanfang Ye · Chuxu Zhang -
2023 Poster: GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Yuanqi Du · Samuel Stanton · Gary Tom · Bojana Rankovic · Arian Jamasb · Aryan Deshwal · Julius Schwartz · Austin Tripp · Gregory Kell · Simon Frieder · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Johannes Peter Dürholt · Saudamini Chaurasia · Ji Won Park · Felix Strieth-Kalthoff · Alpha Lee · Bingqing Cheng · Alan Aspuru-Guzik · Philippe Schwaller · Jian Tang -
2023 Poster: GraphPatcher: Mitigating Degree Bias for Graph Neural Networks via Test-time Node Patching »
Mingxuan Ju · Tong Zhao · Wenhao Yu · Neil Shah · Yanfang Ye -
2023 Poster: A new perspective on building efficient and expressive 3D equivariant graph neural networks »
weitao Du · Yuanqi Du · Limei Wang · Dieqiao Feng · Guifeng Wang · Shuiwang Ji · Carla Gomes · Zhi-Ming Ma -
2023 Poster: Global Convergence Analysis of Local SGD for One-hidden-layer Convolutional Neural Network without Overparameterization »
Yajie Bao · Amarda Shehu · Mingrui Liu -
2023 Poster: Relational Curriculum Learning for Graph Neural Network »
Zheng Zhang · Junxiang Wang · Liang Zhao -
2023 Poster: On Separate Normalization in Self-supervised Transformers »
Xiaohui Chen · Yinkai Wang · Yuanqi Du · Soha Hassoun · Liping Liu -
2023 Poster: Stochastic Optimal Control for Collective Variable Free Sampling of Molecular Transition Paths »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2023 Poster: M$^2$Hub: Unlocking the Potential of Machine Learning for Materials Discovery »
Yuanqi Du · Yingheng Wang · Yining Huang · Jianan Canal Li · Yanqiao Zhu · Tian Xie · Chenru Duan · John Gregoire · Carla Gomes -
2023 Poster: Uncovering Neural Scaling Law in Molecular Representation Learning »
Dingshuo Chen · Yanqiao Zhu · Jieyu Zhang · Yuanqi Du · Zhixun Li · Qiang Liu · Shu Wu · Liang Wang -
2023 Workshop: AI for Science: from Theory to Practice »
Yuanqi Du · Max Welling · Yoshua Bengio · Marinka Zitnik · Carla Gomes · Jure Leskovec · Maria Brbic · Wenhao Gao · Kexin Huang · Ziming Liu · Rocío Mercado · Miles Cranmer · Shengchao Liu · Lijing Wang -
2023 Workshop: Computational Sustainability: Promises and Pitfalls from Theory to Deployment »
Suzanne Stathatos · Christopher Yeh · Laura Greenstreet · Tarun Sharma · Katelyn Morrison · Yuanqi Du · Chenlin Meng · Sherrie Wang · Fei Fang · Pietro Perona · Yoshua Bengio -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: Audio-Driven Co-Speech Gesture Video Generation »
Xian Liu · Qianyi Wu · Hang Zhou · Yuanqi Du · Wayne Wu · Dahua Lin · Ziwei Liu -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Deep Generative Model for Periodic Graphs »
Shiyu Wang · Xiaojie Guo · Liang Zhao -
2022 Poster: Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks »
Arian Jamasb · Ramon Viñas Torné · Eric Ma · Yuanqi Du · Charles Harris · Kexin Huang · Dominic Hall · Pietro Lió · Tom Blundell -
2022 Poster: Co-Modality Graph Contrastive Learning for Imbalanced Node Classification »
Yiyue Qian · Chunhui Zhang · Yiming Zhang · Qianlong Wen · Yanfang Ye · Chuxu Zhang -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik